• Title/Summary/Keyword: Regional Resources

Search Result 1,955, Processing Time 0.028 seconds

Development of a System Dynamics Model for the Efficient Operation and Maintenance of Sewerage Systems (하수도 시스템의 효율적인 운영 및 유지관리를 위한 시스템다이내믹스 모형의 개발)

  • Park, Su-Wan;Lee, Tae-Geun;Kim, Bong-Jae;Kim, Tae-Young
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.101-111
    • /
    • 2012
  • In this paper, the feedback loop mechanisms among the operational indices and exogenous variables of a sewerage system that are inherent in the operation and maintenance of a sewerage system were identified using the System Dynamics (SD) modeling methodology. The identified feedback loops were used to develop a SD computer simulation model that can be used to predict future operational conditions of a sewerage system and identified the efficient ways of operation. The data of Busan metropolitan city sewerage system was applied to verify the developed SD model and predict future operational conditions of the system. As a result, it was predicted that sewage treatment efficiency, volume of sewage treatment and cost recovery rate will be gradually increased, whereas service rate which was already very close to the target will remain almost the same as the current value. Furthermore, sensitivity analysis concerning some operational indices was performed in order to discover the policy leverage. As a result, it was found that the exogenous variables related to the pipe maintenance had a great effect on facility using rate, volume of sewage treatment as well as sewage treatment efficiency.

A Study on the Plants Used as Temple Food in Jeju Island (제주지역 사찰음식으로 이용되는 식물에 대한 연구)

  • Song, Jung-Min;Yang, Hyo-Sun;Sun, Byung-Yun;Kim, Chul-Hwan;Do, Seon-Gil;Kim, Young-Ju;Song, Gwan-Pil
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.465-472
    • /
    • 2012
  • We examined plants that were used as temple food in Jeju from May 2011 to January 2012. Thirty-six temples participated in the study, and there were 58 questionnaire respondents. Fifty-seven taxa were used as temple food, which belonged to 27 families, 51 genera, 55 species, and two varieties. The most commonly used family-based taxa were eight species of Compositae, six species of Cruciferae, and four species of Umbelliferae. Ten species of woody plants and 25 species of Jeju native plants were also used as temple food. The most useful part was the leaf, followed by the root, leaflet, and fruit. A patent search showed that most of the surveyed plants were covered by intellectual property rights. Forty-eight species had food-related patents, 34 species had cosmetics-related patents, and 38 species had medicine-related patents. The purchase and procurement of Jeju temple food plants usually depended on the market or plant cultivation rather than the use of the plants. Gathering of wild herbs for temple food has been performed on a limited basis. Therefore, collecting traditional knowledge for the use of Jeju plant resources should be conducted under different conditions rather than through a temple-related study.

Analysis of debris flow simulation parameters with entrainment effect: a case study in the Mt. Umyeon (연행작용을 고려한 우면산 토석류 모의 매개변수 특성분석)

  • Lee, Seungjun;An, Hyunuk;Kim, Minseok;Lim, Hyuntaek
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.637-646
    • /
    • 2020
  • The shallow landslide-trigerred debris flow in hillslope catchments is the primary geological phenomenon that drives landscape changes and therefore imposes risks as a natural hazard. In particular, debris flows occurring in urban areas can result to substantial damages to properties and human injuries during the flow and sediment transport process. To alleviate the damages as a result of these debris flow, analytical models for flow and damage prediction are of significant importance. However, the analysis of debris flow model parameters is not yet sufficient, and the analysis of the entrainment, which has a significant influence on the flow process and the damage extent, is still incomplete. In this study, the effects of erosion and erosion process on the flow and the impact area due to the change in the soil parameters are analyzed using Deb2D model, a flow analysis model of debris developed in Korea. The research is conducted for the case of the Mt. Umyeon landslide in 2011. The resulting impacted area, total debris-flow volume, maximum velocity and inundated depth from the Erosion model are compared to the field survey data. Also, the effect of the entrainment changing parameters is analyzed through the erosion shape and depth. The debris flow simulation for the Raemian and Shindong apartment catchment with the consideration of entrainment effect and erosion has been successful. Each parameter sensitivity could be analyzed through sensitivity analysis for the two basins based on the change in parameters, which indicates the necessity of parameter estimation.

Effects of varying nursery phase-feeding programs on growth performance of pigs during the nursery and subsequent grow-finish phases

  • Lee, Chai Hyun;Jung, Dae-Yun;Park, Man Jong;Lee, C. Young
    • Journal of Animal Science and Technology
    • /
    • v.56 no.7
    • /
    • pp.24.1-24.6
    • /
    • 2014
  • The present study investigated the effects of varying durations of nursery diets differing in percentages of milk products on growth performance of pigs during the nursery phase (NP) and subsequent grow-finish phase (GFP) to find the feasibility of reducing the use of nursery diets containing costly milk products. A total of 204 21-d-old weanling female and castrated male pigs were subjected to one of three nursery phase feeding programs differing in durations on the NP 1 and 2 and GFP diets containing 20%, 7%, and 0% lacrosse and 35%, 8%, and 0% dried whey, respectively, in 6 pens (experimental units) for 33 d: HIGH (NP 1, 2 and 3 diets for 7, 14, and 12 d), MEDIUM (NP 2 and 3 for 14 and 19 d), and LOW (NP 2 and 3 and GFP 1 for 7, 14, and 12 d). Subsequently, 84 randomly selected pigs [14 pigs (replicates)/pen] were fed the GFP 1, 2 and 3 diets during d 54-96, 96-135, and 135-182 of age, respectively. The final body weight (BW) and average daily gain (ADG) of nursery pigs did not differ among the HIGH, MEDIUM, and LOW groups (14.8, 13.3, and 13.7 kg in BW and 273, 225, and 237 g in ADG, respectively). The average daily feed intake during the nursery phase was greater (p < 0.01) in the HIGH group than in the MEDIUM and LOW groups, whereas the gain:feed ratio did not differ across the treatments. The BW on d 182 and ADG during d 54-182 were greater in the HIGH and MEDIUM groups vs. the LOW group (110.0, 107.6, and 99.6 kg in BW, respectively; p < 0.01). The backfat thickness and carcass grade at slaughter on d 183 did not differ across the treatments. In conclusion, the MEDIUM program may be inferior to the commonly used HIGH program in supporting nursery pig growth. Nevertheless, the former appears to be more efficient than the latter in production cost per market pig whereas the LOW program is thought to be inefficient because of its negative effect on post-nursery pig growth.

Parameter Regionalization of a Tank Model for Simulating Runoffs from Ungauged Watersheds (미계측 유역 유출 모의를 위한 Tank 모형의 매개변수 지역화)

  • Kang, Min Goo;Lee, Joo Heon;Park, Ki Wook
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.519-530
    • /
    • 2013
  • To provide a reliable tool for runoff simulations of ungauged watersheds upstream of reservoirs, a daily runoff simulation model, Tank model, is restructured, the parameter regionalization of the model is conducted, and the model's applicability is evaluated. Taking into account the characteristics of runoffs from the watersheds, a three-tank model is employed. The percolation process of the model's third tank is eliminated, considering the water budgets of the watersheds, and its evapotranspiration component is improved, reflecting the conditions of meteorological observation in South Korea. The sensitivity analysis of the model shows that the model's behaviors, varying with a sensitive parameter, ${\alpha}$, are reasonable. The regional parameter estimation equations are determined, using the characteristics and land uses of the watersheds as variables. The model is applied for the runoff simulations of three watersheds and the water stage simulation of one reservoir, and the simulation results are then compared with the observed values, which prove to be in close agreement with the observations. In addition, the results from simulating inflows of twenty-four reservoirs using the model show that the averages of evapotranspiration rate and runoff rate are 42.8% and 56.6%, respectively, which are resonable. Consequently, it is concluded that the model is practically applicable to simulating runoffs from watersheds upstream of reservoirs, and simulated inflow data are useful for watershed management and reservoir planning, design, and operation.

GIS-based Network Analysis for the Understanding of Aggregate Resources Supply-demand and Distribution in 2018 (GIS 네트워크 분석을 이용한 2018년 골재의 수요-공급과 유통 해석)

  • Lee, Jin-Young;Hong, Sei Sun
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.515-533
    • /
    • 2021
  • Based on the supply location, demand location, and transportation network, aggregate supply-demand characteristics and aggregate distribution status were analyzed from the results of the closest distance, service areas, and location-allocation scenarios using GIS network analysis. As a result, it was found that the average transport distance of aggregates from the supplier was 6 km on average, the average range of 7 km for sand, and 10 km for gravel was found to reach the destination. In particular, the simulated service area covers about 92% in Seoul-Gyeonggi Province, 85% in Busan-Ulsan-Gyeongnam Province, and more than 90% in Daejeon-Sejong-Chungnam Province. These results have a significant implication in quantitatively interpreting primary data on aggregate supply-demand. Furthermore, these results suggest the possibility of a wide-area quantitative analysis of aggregate supply regions necessary for establishing a basic aggregate plan. The results also evaluated by the site-allocation scenario show that aggregate supply may be possible through companies less than 200 with large-amounts quarries, which is the 700 companies currently supplying small amounts of aggregates on the country. Therefore, in terms of distribution of aggregates, a policy approach is needed to form an appropriate market for regions with high and low density of aggregate supply services, and the necessity of regional distribution and re-evaluation is suggested through an aggregate supply analysis demand across the country. Furthermore, in analyzing the supply-demand network for the aggregate market, additional research is needed to establish long-term policies for the aggregate industry and related industries.

Community Structure Comparison of Fagaceae Forest Vegetation in Namsan, Odaesan, and Ulleungdo (남산, 오대산, 울릉도 지역의 주요 참나무과 산림식생에 대한 군락구조 비교)

  • I-Seul, Yun;Ju Hyeon, Song;Seong Yeob, Byeon;Ho Jin, Kim;Jeong Eun, Lee;Ji-dong, Kim;Chung-Weon, Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.511-529
    • /
    • 2022
  • The forest vegetation of the Korean Peninsula is dominated by deciduous Fagaceae forests. The study aimed to comparethe correlation between species composition and environmental factors in Namsan, Odaesan, and Ulleungdo. A vegetation survey of 75 sites was conducted from May to August 2018. Seven vegetation types were classified. The inland representative vegetation was classified as a Quercus mongolica community, and the island representative vegetation was classified as a Fagus multinervis community. The Quercus mongolica community was subdivided into the Aria alnifolia group, representative of cities, and the Tilia amurensis group, representative of mountainous regions. Analysis of important values and indicator species to examine the succession trends according to regional types showed that urban and island forestswere maintained as Fagaceae communities, and that mountainous region foreststransitioned to broadleaf species, such as Tilia amurensis and Carpinus cordata. A CCA analysis of vegetation type and site environmental factors showed that altitude had the biggest effect on species composition at the same latitude. The study results should contribute to a better understanding of the Korean Peninsula forest ecosystem characteristics and provide basic data for establishing a systematic conservation and restoration plan.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits

  • Wei Wang;Xuanyu Liang;Qinghe Niu;Qizhi Wang;Jinyi Zhuo;Xuebin Su;Genmao Zhou;Lixin Zhao;Wei Yuan;Jiangfang Chang;Yongxiang Zheng;Jienan Pan;Zhenzhi Wang;Zhongmin Ji
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2773-2784
    • /
    • 2023
  • It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder (폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구)

  • Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.