DOI QR코드

DOI QR Code

Analysis of debris flow simulation parameters with entrainment effect: a case study in the Mt. Umyeon

연행작용을 고려한 우면산 토석류 모의 매개변수 특성분석

  • Lee, Seungjun (Department of Agricultural and Rural Engineering, Chungnam National University) ;
  • An, Hyunuk (Department of Agricultural and Rural Engineering, Chungnam National University) ;
  • Kim, Minseok (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lim, Hyuntaek (Department of Regional Infrastructure Engineering, Kangwon National University)
  • 이승준 (충남대학교 지역환경토목학과) ;
  • 안현욱 (충남대학교 지역환경토목학과) ;
  • 김민석 (한국지질자원연구원 지질환경재해연구센터) ;
  • 임현택 (강원대학교 지역건설공학과)
  • Received : 2020.06.09
  • Accepted : 2020.07.08
  • Published : 2020.09.30

Abstract

The shallow landslide-trigerred debris flow in hillslope catchments is the primary geological phenomenon that drives landscape changes and therefore imposes risks as a natural hazard. In particular, debris flows occurring in urban areas can result to substantial damages to properties and human injuries during the flow and sediment transport process. To alleviate the damages as a result of these debris flow, analytical models for flow and damage prediction are of significant importance. However, the analysis of debris flow model parameters is not yet sufficient, and the analysis of the entrainment, which has a significant influence on the flow process and the damage extent, is still incomplete. In this study, the effects of erosion and erosion process on the flow and the impact area due to the change in the soil parameters are analyzed using Deb2D model, a flow analysis model of debris developed in Korea. The research is conducted for the case of the Mt. Umyeon landslide in 2011. The resulting impacted area, total debris-flow volume, maximum velocity and inundated depth from the Erosion model are compared to the field survey data. Also, the effect of the entrainment changing parameters is analyzed through the erosion shape and depth. The debris flow simulation for the Raemian and Shindong apartment catchment with the consideration of entrainment effect and erosion has been successful. Each parameter sensitivity could be analyzed through sensitivity analysis for the two basins based on the change in parameters, which indicates the necessity of parameter estimation.

산지 사면에서 발생하는 토석류는 지형변화에 큰 영향을 미치는 대표적인 자연재해 중 하나이다. 특히, 도심지역에서 발생된 토석류는 유동 및 퇴적과정에서 막대한 재산피해와 인명피해를 야기할 수 있으며 이러한 토석류로 인한 피해를 줄이기 위해서는 토석류의 유동과 피해규모를 예측하기 위한 해석모형들이 필수적이다. 하지만 아직 토석류 모형들의 매개변수에 대한 분석은 충분하지 않으며, 특히 토석류의 유동과정 및 피해 규모에 큰 영향을 미치는 연행작용에 대한 연구는 미비한 실정이다. 본 연구에서는 국내에서 개발된 토석류 유동해석 모형인 Deb2D 모형을 통하여 토석류의 매개변수 변화에 따른 흐름, 피해지역에 미치는 영향 그리고 침식과정에 대하여 분석하였다. 2011년 우면산에서 발생한 산사태에 적용하였으며, 수치모형의 객관적인 정확성 판단을 위해 현장 조사를 통해 얻어진 토석류의 피해 범위, 총 퇴적량, 특정 지점에서 관측된 최대 퇴적 높이, 토석류의 첨두 유속를 검토하였다. 또한 매개변수 변화가 연행작용에 미치는 영향에 대하여 침식 형상 및 깊이를 통해 분석하였다. 연행작용을 고려한 래미안 아파트와 신동아 아파트 유역의 모의는 성공적으로 수행되었다. 매개변수 변화에 따른 두 유역에서의 민감도 분석을 통해 각 매개변수의 영향성을 판단할 수 있었다.

Keywords

References

  1. An, H., Ichkawa, Y., Tachikawa, Y., and Shiiba, M. (2012). "Comparison between iteration schemes for three-dimensional coordinatetransformed saturated-unsaturated flow model." Journal of Hydrology, Elsevier, Vol. 470-471, No. 12, pp. 212-226. https://doi.org/10.1016/j.jhydrol.2012.08.056
  2. An, H., Kim, M., Lee, G., Kim, Y., and Lim, H. (2019). "Estimation of the area of sediment deposition by debris flow using a physical-based modeling approach." Quaternary International, Elsevier, Vol. 503, No. PA, pp. 59-69. https://doi.org/10.1016/j.quaint.2018.09.049
  3. Beguería, S., Van Asch, T.W.J., Malet, J.-P., and Grondahl, S. (2009). "A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain." Natural Hazards and Earth System Sciences, EGU, Vol. 9, pp. 1897-1909. https://doi.org/10.5194/nhess-9-1897-2009
  4. Choi, J.R. (2018). "An analysis of debris-flow propagation characteristics and assessment of building hazard mapping using FLO-2D." Crisisonomy, Crisis and Emergency Management, Vol. 14, No. 2, pp. 91-99. https://doi.org/10.14251/crisisonomy.2018.14.2.91
  5. D'Aniello, A., Cozzolino, L., Cimorelli, L., Della, M.R., and Pianese, D. (2015). "A numerical model for the simulation of debris flow triggering, propagation and arrest." Natural Hazards, Springer, Vol. 75, No. 2, pp. 1403-1433. https://doi.org/10.1007/s11069-014-1389-8
  6. Frank, F., McArdell, B.W., Huggel, C., and Vieli, A. (2015). "The importance of entrainment and bulking on debris flow runout modeling: Examples from the Swiss Alps." Natural Hazards and Earth System Sciences, EGU, Vol. 15, No. 11, pp. 2569-2583. https://doi.org/10.5194/nhess-15-2569-2015
  7. Hsu, S.M., Chiou, L.B., Lin, G.F., Chao, C.H., Wen, H.Y., and Ku, C.Y. (2010). "Applications of simulation technique on debrisflow hazard zone delineation: A case study in Hualien County, Taiwan." Natural Hazards and Earth System Sciences, EGU, Vol. 10, pp. 535-545. https://doi.org/10.5194/nhess-10-535-2010
  8. Hungr, O., and McDougall, S. (2009). "Two numerical models for landslide dynamic analysis." Computers & geosciences, Elsevier, Vol. 35, No. 5, pp. 978-992. https://doi.org/10.1016/j.cageo.2007.12.003
  9. Hurlimann, M.D.R., and Graf, C. (2003). "Field and monitoring data of debris-flow events in the Swiss Alps." Canadian geotechnical journal, NRC Canda, Vol. 40, No. 1, pp. 161-175. https://doi.org/10.1139/t02-087
  10. Hussin, H.Y., Quan Luna, B., van Westen, C.J., Christen, M., Malet, J.-P., and van Asch, T.W.J. (2012). "Parameterization of a numerical 2-D debris flow model with entrainment: A case study of the Faucon catchment, Southern French Alps." Natural Hazards and Earth System Sciences, EGU, Vol. 12, No.10, pp. 3075-3090. https://doi.org/10.5194/nhess-12-3075-2012
  11. Jang, S., Lee, Y., Lee, K., Kim, K., Lee, J., and Chun, K. (2020). "A study of disaster prevention and characteristics of landslides triggered by the 2019 typhoon Mitag in Samcheok." Journal of The Korean Society of Hazard Mitigation, KOSHAM, Vol. 20, No. 2, pp. 221-227.
  12. Jeong, S., Kim, H., Song, C., and Lee, S. (2018). "Entrainment effect on debris flow propagation." Journal of The Korean Society of Hazard Mitigation, KOSHAM, Vol. 18, No. 6, pp. 105-110. https://doi.org/10.9798/kosham.2018.18.6.105
  13. Jun, K., Kim, G., and Yune, C. (2013). "Analysis of debris flow type in Gangwon province by database construction." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 33, No. 1, pp. 171-179. https://doi.org/10.12652/Ksce.2013.33.1.171
  14. Kang, H., and Kim, Y. (2015). "Study on physical vulnerability curves of buildings by numerical simulation of debris flow." Journal of The Korean Society of Hazard Mitigation, KOSHAM, Vol. 15, No. 5, pp. 155-167. https://doi.org/10.9798/KOSHAM.2015.15.5.155
  15. Kim, M., Kim, J., Cho, Y., and Kim, S. (2011). "Geomorphiccharacteristics of debris flow induced by typhoon "RUSA" in 2002 using Shalstab model and remote sensing: Case study in Macheon region near Jiri-Mountain." Journal of the Korean Geomorphological Association, KGA, Vol. 18, No. 4, pp. 193-202.
  16. Kim, S., Paik, J., and Kim, K. (2013). "Run-out modeling of debris flows in Mt. Umyeon using FLO-2D." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 33, No. 3, pp. 965-974. https://doi.org/10.12652/Ksce.2013.33.3.965
  17. Klaus, S., Barbara, T., Brian, M., Christoph, G., Oldrich, H., and Roland, K. (2015). "Modeling debris-flow runout pattern on a forested alpine fan with different dynamic simulation models." Engineering Geology for Society and Territory, EGU, Vol. 2, pp. 1673-1676.
  18. Korea Institute of Geoscience And Mineral Resources (KIGAM) (2006). Development of QRA system and damage mitigation technology of landslides. Research report, Office for Government Policy Coordination, TRKO200500002717, pp. 1-360.
  19. Lee, D., Lee, S., and Park, J. (2019). "Numerical Simulation of Debris Flow Behavior at Mt. Umyeon using the DAN3D Model." Journal of The Korean Society of Hazard Mitigation, KOSHAM, Vol. 19, No. 17, pp. 195-202. https://doi.org/10.9798/KOSHAM.2019.19.3.195
  20. Lee, K., Park, H., and Jeong, S. (2016). "A proposed analytical model for the debris flow with erosion and entrainment of soil layer." Journal of the Korean geotechnical society, KGS, Vol. 32, No. 10, pp. 17-29. https://doi.org/10.7843/kgs.2016.32.10.17
  21. Lim, J., and Kim, B. (2019). "Modeling for debris flow behavior on expressway using FLO-2D." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 39, No. 2, pp. 263-272. https://doi.org/10.12652/KSCE.2019.39.2.0263
  22. McDougall, S., and Hungr, O. (2005). "Dynamic modelling of entrainment in rapid landslides." Canadian Geotechnical Journal, NRC Research Press, Vol. 42, No. 5, pp. 1437-1448. https://doi.org/10.1139/t05-064
  23. Medina, V., Hürlimann, M., and Bateman, Allen. (2008). "Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula." Landslides, Springer, Vol. 5, No. 1, pp. 127-142. https://doi.org/10.1007/s10346-007-0102-3
  24. Mergili, M., Schratz, K., Ostermann, A., and Fellin, W. (2012). "Physically-based modelling of granular flows with open source GIS." Natural Hazards and Earth System Sciences, EGU, Vol. 12, No. 1, pp. 187-200. https://doi.org/10.5194/nhess-12-187-2012
  25. O'Brien, J.S., Julien, P.Y., and Fullerton, W.T. (1993). "Twodimensional water flood and mudflow simulation." Journal of hydraulic engineering, ASCE, Vol. 119, No. 2, pp. 244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
  26. Oh, C., and Jun, K. (2019). "Terrain data construction and FLO-2D modeling of the debris-flow occurrences area." Journal of Korean Society of Disaster & Security, KSDS, Vol. 12, No. 4, pp. 53-61. https://doi.org/10.21729/KSDS.2019.12.4.53
  27. Park, D., Lee, S., Nikhil, N.V., Kang, S., and Park, J. (2013). "Debris flow hazard zonation by probabilistic analysis(Mt. Woomyeon, Seoul, Korea)." International Journal of Innovative Research in Science, Engineering and Technology, IJIRSET, Vol. 2, No. 6, pp. 2381-2390.
  28. Pastor, M., Blanc, T., and Pastor, M.J. (2009). "A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: Application to fast catastrophic landslides." Journal of non-Newtonian fluid mechanics, Elsevier, Vol. 158, No. 1-3, pp. 142-153. https://doi.org/10.1016/j.jnnfm.2008.07.014
  29. Pirulli, M., and Sorbino, G. (2008). "Assessing potential debris flow runout: A comparison of two simulation models." Natural Hazards and Earth System Sciences, EGU, Vol. 8, No. 4, pp. 961-971. https://doi.org/10.5194/nhess-8-961-2008
  30. Pratson, L.F., Imran, J., Hutton, E.W., Parker, G., and Syvitski, J.P. (2001). "BANG1D: A one-dimensional, Lagrangian model of subaqueous turbid surges." Computers & Geosciences, Elsevier, Vol. 27, No. 6, pp. 701-716. https://doi.org/10.1016/S0098-3004(00)00123-0
  31. Remaitre, A., Malet, J.-P., and Olivier, M. (2005). "Morphology and sedimentology of a complex debris flow in a clay-shale basin." Earth surface processes and landforms, WILEY, Vol. 30, No. 3, pp. 339-348. https://doi.org/10.1002/esp.1161
  32. Rickenmann, D., Laigle, D., McArdell, B.W., and Hubl, J. (2006). "Comparison of 2D debris-flow simulation models with field events." Computational Geosciences, Springer, Vol. 10, No. 2, pp. 241-264. https://doi.org/10.1007/s10596-005-9021-3
  33. Seoul City (2014). Research contract report: Addition and Complement causes survey of Mt, vol.2011 Woomyeon landslide. Research report, 51-6110000-000649-01, pp. 1-46.
  34. Shrestha, B.B., Nakagawa, H., Kawaike, K., and Baba, Y. (2008). "Numerical simulation on debris-flow deposition and erosion processes upstream of a check dam with experimental verification." Annuals of Disaster Prevention Research Institute, Kyoto Univ., No. 51B, pp. 613-624.
  35. Son, S., Choi, B., and Paik, J. (2012). "Characteristics of rainfall and ground water table in a small forested watershed of Mt. Umyeon." Proc of 38th Annual Conference of Korean Society of Civil Engineers, KSCE, Vol. 2012, No. 10, pp. 769-772.
  36. Sovilla, B., Burlando, P., and Bartelt, P. (2006). "Field experiments and numerical modeling of mass entrainment in snow avalanches." Journal of Geophysical Research, AUG, Vol. 111, No. F3, pp. F03007(1-16).
  37. Takahashi, T., and Nakagawa, H. (1991). "Prediction of stony debris flow induced by severe rainfall." Journal of the Japan Society of Erosion Control Engineering, JSECE, Vol. 44, No. 3, pp. 12-19.