• 제목/요약/키워드: Region-Based

검색결과 10,754건 처리시간 0.056초

영역기반 초저속 부호화를 위한 인간 시각 체계에 기반한 계층적 영상 분할 (Hierarchical Image Segmentation Based on HVS Characteristic for Region-Based Very Low Bit Rate Coding)

  • 송근원;박영식;한규필;남재열;하영호
    • 전자공학회논문지S
    • /
    • 제36S권1호
    • /
    • pp.70-80
    • /
    • 1999
  • 본 논문에서는 인간 시각 체계에 기반하여 주관적 화질의 열화없이 전송 정보량을 효과적으로 줄일 수 있고, 또한 전송 정보량을 조절할 수 있는 영역기반 초적속 부호화에 적합한 새로운 계층적 영상 분할 알고리즘을 제한한다. 제안한 알고리즘은 각 단계에서 수리 형태학에 기반한 영상 분할과 인간 시각 체계를 고려한 영역 볍합 고조로 이루어져 있다. 영상분할은 3단계의 계층적 구조로 이루어져 있으며, 영역 병합은 각 단계에서 인간 시각 체계에 기반하여 인간 시각이 구분할 수 없는 두 인접 영역의 쌍들을 추출한 후 영역 병합을 수행한다. 이때 인간 시각 체계에 기반하여 병합할 영역을 추출하고 제안한 병합을 우선 순위 함수에 의한 병합 우선 순위에 따른 영역 볍합ㅇ르 차례로 수행하여 영역의 수를 효과적으로 줄임으로써 영역기반 초저속 부호화시 과다한 윤곽선 정보로 인한 병목현상을 개선할 수 있다. 그리고 각 단계에서의 영역 병합시 정보량 조절 요소 값에 따라 전송 정보량을 조절할 수 있어 기존의 방법보다 유연한 분할 구조를 나타낸다. 실험을 통하여 제안한 방법은 기존의 방법보다 PSNR 및 주관적 화질은 유사하나, 전송할 윤곽선 정보는 상당히 줄일 수 있어 영역기반 초적속 부호화를 위한 효율적 영상 분할 알고리즘임을 알 수 있다.

  • PDF

영역기반 영상 검색을 위한 FRIP 시스템 (FRIP System for Region-based Image Retrieval)

  • 고병철;이해성;변해란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권3호
    • /
    • pp.260-272
    • /
    • 2001
  • 본 논문에서는, 영역 기반 영상 검색 시스템인 FRIP(Finding Region In the Pictures)을 제안한다. 이 시스템은 크게 색상과 방향성 질감 성분을 결합하는 굳건한 영상 분할 알고리즘과, 분할된 각 영역으로부터 특징 정보들을 추출하고 검색하는 3개의 알고리즘을 포함하고 있다. 영역 분할을 위해서, 영상으로부터 확장 및 이동된 색상 좌표계와, 방향성 질감 성분을 추출하여, 본 시스템에서 제안하는 원형필터에 적용시킨다. 원형 필터에 의해, 영역의 경계선이 자연스럽게 유지 될 수 있고, 또한 일반적인 영역 병합 알고리즘에 의해 병합되지 않던 의미 없는 줄무늬나 작은 점 영역들도 몸체 영역으로 병합 될 수 있다. 영상을 분할한 후에, 효율적인 저장 공간의 관리와 특징 정보 계산 시간을 줄이기 위하여 각 영역으로부터 최적의 특징 정보만을 추출하고 이것을 색인화 하여 데이타베이스에 저장하고 검색에 사용한다. 사용자 인터페이스를 위해서는, 영역의 '색상', '크기', '모양', '위치'와 같은 4개의 질의 조건을 주고, 사용자의 요구에 따라 정합 점수를 계산한 뒤, 그 점수에 따라 상위 검색 결과를 보여 주도록 설계되었다.

  • PDF

MPEG-4 FGS 비디오를 위한 사각영역 기반의 선택적 향상기법 (Rectangular Region-based Selective Enhancement (RSE) for MPEG-4 FGS Video)

  • 서광덕;신창호;김재균
    • 한국통신학회논문지
    • /
    • 제28권6C호
    • /
    • pp.634-647
    • /
    • 2003
  • 본 논문에서는 MPEG-4 FGS (fine granular scalability) 영상부호화 기법 중에서, 수신측의 주관적 화질을 향상시키기 위한 기법인 선택적 향상 (SE: selective enhancement) 기법이 갖는 추가 비트율의 증가 문제를 효과적으로 해결하는 방법을 제안한다. 본 논문에서 제안하는 RSE기법은 기존의 FGS SE기법의 향상계층에서 발생하는 비트량 증가 문제를 효과적으로 해결하기 위해서 다음과 같은 새로운 알고리즘에 기반 한다. 첫째, 매크로블록 기즌으로 선택하는 기존의 SE기법을 사각영역 (rectangular region) 기준으로 선택하는 SE기법 (RSE)으로 변경한다. 이렇게 함으로써 SE기법의 적용대상의 표현이 화면별로 간편하게 서술되어 비트율을 줄일 수 있다. 둘째, 비트평면 (bit-plane)부호화의 대상을 제한하는 제한형 비트평면 주사 (CBS. constrained bit-plane scanning) 기법을 적용한다. 이렇게 함으로써 SE기법에서 발생하는 비트평면의 개수 증가 및 ALL-ZERO 심볼의 증가로 인한 비트율 증가 문제를 해결할 수 있다. 모의실험을 통해, 기존의 표준 SE기법에 비해 제안된 RSE기법의 부호화 효율과 수신측 영상의 화질이 향상됨을 확인한다.

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제8권1호
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

자율 이동 로봇의 주행을 위한 영역 기반 Q-learning (Region-based Q- learning For Autonomous Mobile Robot Navigation)

  • 차종환;공성학;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.174-174
    • /
    • 2000
  • Q-learning, based on discrete state and action space, is a most widely used reinforcement Learning. However, this requires a lot of memory and much time for learning all actions of each state when it is applied to a real mobile robot navigation using continuous state and action space Region-based Q-learning is a reinforcement learning method that estimates action values of real state by using triangular-type action distribution model and relationship with its neighboring state which was defined and learned before. This paper proposes a new Region-based Q-learning which uses a reward assigned only when the agent reached the target, and get out of the Local optimal path with adjustment of random action rate. If this is applied to mobile robot navigation, less memory can be used and robot can move smoothly, and optimal solution can be learned fast. To show the validity of our method, computer simulations are illusrated.

  • PDF

자연 영상에서 획 너비 추정 기반 텍스트 영역 이진화 (The Binarization of Text Regions in Natural Scene Images, based on Stroke Width Estimation)

  • ;김정환;이귀상
    • 스마트미디어저널
    • /
    • 제1권4호
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, a novel text binarization is presented that can deal with some complex conditions, such as shadows, non-uniform illumination due to highlight or object projection, and messy backgrounds. To locate the target text region, a focus line is assumed to pass through a text region. Next, connected component analysis and stroke width estimation based on location information of the focus line is used to locate the bounding box of the text region, and each box of connected components. A series of classifications are applied to identify whether each CC(Connected component) is text or non-text. Also, a modified K-means clustering method based on an HCL color space is applied to reduce the color dimension. A text binarization procedure based on location of text component and seed color pixel is then used to generate the final result.

  • PDF

Support Vector Machine Learning for Region-Based Image Retrieval with Relevance Feedback

  • Kim, Deok-Hwan;Song, Jae-Won;Lee, Ju-Hong;Choi, Bum-Ghi
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.700-702
    • /
    • 2007
  • We present a relevance feedback approach based on multi-class support vector machine (SVM) learning and cluster-merging which can significantly improve the retrieval performance in region-based image retrieval. Semantically relevant images may exhibit various visual characteristics and may be scattered in several classes in the feature space due to the semantic gap between low-level features and high-level semantics in the user's mind. To find the semantic classes through relevance feedback, the proposed method reduces the burden of completely re-clustering the classes at iterations and classifies multiple classes. Experimental results show that the proposed method is more effective and efficient than the two-class SVM and multi-class relevance feedback methods.

  • PDF

Efficient Object-based Image Retrieval Method using Color Features from Salient Regions

  • An, Jaehyun;Lee, Sang Hwa;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권4호
    • /
    • pp.229-236
    • /
    • 2017
  • This paper presents an efficient object-based color image-retrieval algorithm that is suitable for the classification and retrieval of images from small to mid-scale datasets, such as images in PCs, tablets, phones, and cameras. The proposed method first finds salient regions by using regional feature vectors, and also finds several dominant colors in each region. Then, each salient region is partitioned into small sub-blocks, which are assigned 1 or 0 with respect to the number of pixels corresponding to a dominant color in the sub-block. This gives a binary map for the dominant color, and this process is repeated for the predefined number of dominant colors. Finally, we have several binary maps, each of which corresponds to a dominant color in a salient region. Hence, the binary maps represent the spatial distribution of the dominant colors in the salient region, and the union (OR operation) of the maps can describe the approximate shapes of salient objects. Also proposed in this paper is a matching method that uses these binary maps and which needs very few computations, because most operations are binary. Experiments on widely used color image databases show that the proposed method performs better than state-of-the-art and previous color-based methods.

제주시 해안경관을 고려한 해수인수관 관리방안 (Management of Water Pumping System in Coastal Area of Jeju City Based on Coastal Landscape)

  • 조은일;이병걸
    • 한국환경과학회지
    • /
    • 제15권9호
    • /
    • pp.871-880
    • /
    • 2006
  • Water management treatment of coastal region has been an important problem in Jeju city since the distributions of pipeline of the pumping system made a bad view in coastal region. To solve the problem, we observed the pipelines that are on the surface around the coastal region from Tapdong to Doduhang. From the observations, we found that Todong and Dodu areas were not unsightliness because the all pipelines were located in underground. However, the other areas, such area Yongdam, Handugi, Yongdam fishing village, had a serious problem for the coastal landscape view. To solve the problem, at we estimated coastal land color characteristics of Jeju city based on the observation of the pipelines. The estimated color panel shows that the green, blue and grey colors are a dominant factors of the Jeju coastal region. Based on the color panel, we proposed two methods, that is, one is a short time treatment, the other is a long time one. The short is based on the colour treatment, which is pipeline colour changing into surround natural one. The long time is the construction plan design method. Although the later method was very useful in Jeju island. However, it takes a lot of time and money. Therefore, in the situation, the short time is the better than the long time one.

LuGre Model-Based Neural Network Friction Compensator in a Linear Motor Stage

  • Horng, Rong-Hwang;Lin, Li-Ren;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.18-24
    • /
    • 2006
  • This paper proposes a LuGre Model-Based Neural Network (MBNN) friction compensation algorithm for a linear motor stage. For matching the friction phenomena in both the motion-start region and the motion-reverse region, the LuGre dynamic model is employed into the proposed compensation algorithm. After training of the model-based neural network is completed, the estimated friction for compensation is obtained. From the obtained result we find that the new structure gains advantage over the non-friction compensation system on the performance of the compensator in both regions. The proposed compensator is evaluated and compared experimentally with an uncompensated system on a microcomputer controlled linear motor tracking system in the final section of the paper. The experimental results show the improvement on the maximum velocity error and the root mean square tracking error in the motion-start region ranges from 34% to 53% and from 53% to 75% respectively, and in the motion-reverse region from 48% to 65% and from 79% to 90% respectively.