• Title/Summary/Keyword: Region Growing Scheme

Search Result 19, Processing Time 0.028 seconds

Region Growing Segmentation with Directional Features

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.731-740
    • /
    • 2010
  • A region merging technique is suggested in this paper for the segmentation of high-spatial resolution imagery. It employs a region growing scheme based on the region adjacency graph (RAG). The proposed algorithm uses directional neighbor-line average feature vectors to improve the quality of segmentation. The feature vector consists of 9 components which includes an observation and 8 directional averages. Each directional average is the average of the pixel values along the neighbor line for a given neighbor line length at each direction. The merging coefficients of the segmentation process use a part of the feature components according to a given merging coefficient order. This study performed the extensive experiments using simulation data and a real high-spatial resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for the object-based analysis of high-spatial resolution images.

Fuzzy Training Based on Segmentation Using Spatial Region Growing

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.353-359
    • /
    • 2004
  • This study proposes an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. In the proposed method, the image is segmented using a spatial region growing based on hierarchical clustering, and fuzzy training is then employed to find the sample classes that well represent the ground truth. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes. The experimental results show that the new scheme proposed in this study could be used to select the regions with different characteristics existed on the scene of observed image as an alternative of field survey that is so expensive.

Detection of Various Sized Car Number Plates using Edge-based Region Growing (에지 기반 영역확장 기법을 이용한 다양한 크기의 번호판 검출)

  • Kim, Jae-Do;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.122-130
    • /
    • 2009
  • Conventional approaches for car number plate detection have dealt with those input images having similar sizes and simple background acquired under well organized environment. Thus their performance get reduced when input images include number plates with different sizes and when they are acquired under different lighting conditions. To solve these problem, this paper proposes a new scheme that uses the geometrical features of number plates and their topological information with reference to other features of the car. In the first step, those edges constructing a rectangle are detected and several pixels neighboring those edges are selected as the seed pixels for region growing. For region growing, color and intensity are used as the features, and the result regions are merged to construct the candidate for a number plate if their features are within a certain boundary. Once the candidates for the number plates are generated then their topological relations with other parts of the car such as lights are tested to finally determine the number plate region. The experimental results have shown that the proposed method can be used even for detecting small size number plates where characters are not visible.

MRF-based Iterative Class-Modification in Boundary (MRF 기반 반복적 경계지역내 분류수정)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.139-152
    • /
    • 2004
  • This paper proposes to improve the results of image classification with spatial region growing segmentation by using an MRF-based classifier. The proposed approach is to re-classify the pixels in the boundary area, which have high probability of having classification error. The MRF-based classifier performs iteratively classification using the class parameters estimated from the region growing segmentation scheme. The proposed method has been evaluated using simulated data, and the experiment shows that it improve the classification results. But, conventional MRF-based techniques may yield incorrect results of classification for remotely-sensed images acquired over the ground area where has complicated types of land-use. A multistage MRF-based iterative class-modification in boundary is proposed to alleviate difficulty in classifying intricate land-cover. It has applied to remotely-sensed images collected on the Korean peninsula. The results show that the multistage scheme can produce a spatially smooth class-map with a more distinctive configuration of the classes and also preserve detailed features in the map.

Single Relay Selection for Bidirectional Cooperative Networks with Physical-Layer Network Coding

  • Liu, Yingting;Zhang, Hailin;Hui, Leifang;Liu, Quanyang;Lu, Xiaofeng
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.102-105
    • /
    • 2012
  • To serve the growing demand of the bidirectional information exchange, we propose a single relay selection (RS) scheme for physical-layer network coding (PNC) in a bidirectional cooperative network consisting of two sources and multiple relays. This RS scheme selects a single best relay by maximizing the bottleneck of the capacity region of both information flows in the bidirectional network. We show that the proposed RS rule minimizes the outage probability and that it can be used as a performance benchmark for any RS rules with PNC. We derive a closed-form exact expression of the outage probability for the proposed RS rule and show that it achieves full diversity gain. Finally, numerical results demonstrate the validity of our analysis.

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector (퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • In this study, an approach of image fusion in decision level has been proposed for unsupervised image classification using the images acquired from multiple sensors with different characteristics. The proposed method applies separately for each sensor the unsupervised image classification scheme based on spatial region growing segmentation, which makes use of hierarchical clustering, and computes iteratively the maximum likelihood estimates of fuzzy class vectors for the segmented regions by EM(expected maximization) algorithm. The fuzzy class vector is considered as an indicator vector whose elements represent the probabilities that the region belongs to the classes existed. Then, it combines the classification results of each sensor using the fuzzy class vectors. This approach does not require such a high precision in spatial coregistration between the images of different sensors as the image fusion scheme of pixel level does. In this study, the proposed method has been applied to multispectral SPOT and AIRSAR data observed over north-eastern area of Jeollabuk-do, and the experimental results show that it provides more correct information for the classification than the scheme using an augmented vector technique, which is the most conventional approach of image fusion in pixel level.

High-quality Stitching Method of 3D Multiple Dental CT Images (3차원 다중 치과 CT 영상의 고화질 스티칭 기법)

  • Park, Seyoon;Park, Seongjin;Lee, Jeongjin;Shin, Juneseuk;Shin, Yeong-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1205-1212
    • /
    • 2014
  • In this paper, we propose a high-quality stitching method of 3D multiple dental CT images. First, a weighted function is generated using the difference of two distance functions that calculate a distance from the nearest edge of an overlapped region to each position. And a blending ratio propagation function for two gradient vectors is parameterized by the difference and magnitude of gradient vectors that is also applied by the weighted function. When the blending ratio is propagated, an improved region growing scheme is proposed to decide the next position and calculate the blending intensity. The proposed method produces a high-quality stitching image. Our method removes the seam artifact caused by the mean intensity difference between images and vignetting effect. And it removes double edges caused by local misalignment. Experimental results showed that the proposed method produced high-quality stitching images for ten patients. Our stitching method could be usefully applied into the stitching of 3D or 2D multiple images.

Marine Object Detection Based on Kalman Filtering

  • Hwang, Jae-Jeong;Pak, Sang-Hyon;Park, Gil-Yang
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.347-352
    • /
    • 2011
  • In this paper, although Radar has been used for a long time, integrated scheme with visual camera is an efficient way to enhance marine surveillance system. Camera image is focused by radar information but it is easy to be fallen into inaccurate operation due to environmental noises. We have proposed a method to filter the noises by moving average filter and Kalman filter. It is proved that Kalman filtered results preserves linearity while the former includes larger variance.

Automatic Left Ventricle Segmentation by Edge Classification and Region Growing on Cardiac MRI (심장 자기공명영상의 에지 분류 및 영역 확장 기법을 통한 자동 좌심실 분할 알고리즘)

  • Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.507-516
    • /
    • 2008
  • Cardiac disease is the leading cause of death in the world. Quantification of cardiac function is performed by manually calculating blood volume and ejection fraction in routine clinical practice, but it requires high computational costs. In this study, an automatic left ventricle (LV) segmentation algorithm using short-axis cine cardiac MRI is presented. We compensate coil sensitivity of magnitude images depending on coil location, classify edge information after extracting edges, and segment LV by applying region-growing segmentation. We design a weighting function for intensity signal and calculate a blood volume of LV considering partial voxel effects. Using cardiac cine SSFP of 38 subjects with Cornell University IRB approval, we compared our algorithm to manual contour tracing and MASS software. Without partial volume effects, we achieved segmentation accuracy of $3.3mL{\pm}5.8$ (standard deviation) and $3.2mL{\pm}4.3$ in diastolic and systolic phases, respectively. With partial volume effects, the accuracy was $19.1mL{\pm}8.8$ and $10.3mL{\pm}6.1$ in diastolic and systolic phases, respectively. Also in ejection fraction, the accuracy was $-1.3%{\pm}2.6$ and $-2.1%{\pm}2.4$ without and with partial volume effects, respectively. Results support that the proposed algorithm is exact and useful for clinical practice.