• 제목/요약/키워드: Region Growing Method

검색결과 241건 처리시간 0.029초

칼라 참조 맵과 움직임 정보를 이용한 얼굴영역 추출 (Facial region Extraction using Skin-color reference map and Motion Information)

  • 이병석;이동규;이두수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.139-142
    • /
    • 2001
  • This paper presents a highly fast and accurate facial region extraction method by using the skin-color-reference map and motion information. First, we construct the robust skin-color-reference map and eliminate the background in image by this map. Additionally, we use the motion information for accurate and fast detection of facial region in image sequences. Then we further apply region growing in the remaining areas with the aid of proposed criteria. The simulation results show the improvement in execution time and accurate detection.

  • PDF

Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할 (Color image segmentation using the possibilistic C-mean clustering and region growing)

  • 엄경배;이준환
    • 전자공학회논문지S
    • /
    • 제34S권3호
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF

다양한 환경에 강인한 컬러기반 실시간 손 영역 검출 (Color-Based Real-Time Hand Region Detection with Robust Performance in Various Environments)

  • 홍동균;이동화
    • 대한임베디드공학회논문지
    • /
    • 제14권6호
    • /
    • pp.295-311
    • /
    • 2019
  • The smart product market is growing year by year and is being used in many areas. There are various ways of interacting with smart products and users by inputting voice recognition, touch and finger movements. It is most important to detect an accurate hand region as a whole step to recognize hand movement. In this paper, we propose a method to detect accurate hand region in real time in various environments. A conventional method of detecting a hand region includes a method using depth information of a multi-sensor camera, a method of detecting a hand through machine learning, and a method of detecting a hand region using a color model. Among these methods, a method using a multi-sensor camera or a method using a machine learning requires a large amount of calculation and a high-performance PC is essential. Many computations are not suitable for embedded systems, and high-end PCs increase or decrease the price of smart products. The algorithm proposed in this paper detects the hand region using the color model, corrects the problems of the existing hand detection algorithm, and detects the accurate hand region based on various experimental environments.

간 전이 암 환자의 18F-FDG PET 기반 종양 영역 정의: 영상 인자와 자동 영상 분할 기법 간의 관계분석 (Definition of Tumor Volume Based on 18F-Fludeoxyglucose Positron Emission Tomography in Radiation Therapy for Liver Metastases: An Relational Analysis Study between Image Parameters and Image Segmentation Methods)

  • 김희진;박승우;정해조;김미숙;유형준;지영훈;이철영;김금배
    • 한국의학물리학회지:의학물리
    • /
    • 제24권2호
    • /
    • pp.99-107
    • /
    • 2013
  • 간 전이 암은 이전에는 수술을 통한 외과적 절제가 주요 치료기법이었지만 방사선 치료 기법의 발전으로 인해 점차 방사선치료의 시행이 늘어나고 있다. 18F-FDG PET 영상은 간 전이 암 진단 시 더욱 우세한 민감도와 특이도를 보이며, 치료계획용 CT 영상과 더불어 종양조직의 위치를 정의하는 중요한 영상장비로 자리매김하고 있다. 본 연구에서는 간 전이 암의 18F-FDG PET 영상에 나타난 종양영역을 영상분할기법 적용하였으며 PET영상의 여러 인자들이 영상분할기법들에 미치는 영향을 알아보았다. 2009년부터 2012년까지 방사선 치료를 받은 간전이 환자들 중 18F-FDG PET/CT 촬영을 시행한 13명의 환자들의 치료계획용 CT와 PET/CT 영상을 얻었다. 그 뒤 PET 영상의 관심영역을 설정하기 위하여 3가지 영상 분할 기법인 상대적문턱기법, 기울기기법, 영역성장기법을 적용하였다. 이 결과들을 바탕으로 GTV와 각 영상 기법으로 구현된 종양 영역과 부피 비교를 시행하였으며 영상 분할 기법에 영향을 미치는 영상인자들과의 관계를 회귀 분석하였다. GTV (Gross Tumor Volume)의 평균 부피는 $60.9{\pm}65.9$ cc이며, 40% 상대적문턱값 기법은 $22.43{\pm}35.3$ cc, 50% 상대적문턱값 기법은 $10.11{\pm}17.9$ cc, 영역성장기법은 $32.89{\pm}36.8$ cc, 기울기기법은 $30.34{\pm}35.8$ cc로 나타났다. 기존의 GTV와 가장 유사한 영역을 나타낸 영상 분할 기법은 영역성장기법 이었다. 이 영역성장기법에 영향을 미치는 영상인자를 정량적으로 분석하기 위해 표준화 계수 ${\beta}$값을 이용하였으며, GTV의 크기, $TumorSUV_{MAX/MIN}$, $SUV_{max}$, TBR 순으로 나타났다. 이와 같은 PET 영상인자를 반영한 영상 분할 기법을 이용해서 종양 영역을 정의한다면 보다 정확하고 일관성 있는 종양그리기를 수행할 수 있으며 궁극적으로 종양에 최적화된 방사선량을 투여할 수 있을 것이다.

움직임 벡터의 영역화에 의한 가변 블럭 동영상 부호화 (Moving image coding with variablesize block based on the segmentation of motion vectors)

  • 김진태;최종수
    • 한국통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.469-480
    • /
    • 1997
  • For moving image coding, the variable size of region coding based on local motion is more efficient than fixed size of region coding. It can be applied well to complex motions and is more stable for wide motions because images are segmented according to local motions. In this paper, new image coding method using the segmentation of motion vectors is proposed. First, motion vector field is smoothed by filtering and segmented by smoothed motion vectors. The region growing method is used for decomposition of regions, and merging of regions is decided by motion vector and prediction errors of the region. Edge of regions is excluded because of the correlation of image, and neighbor motion vectors are used evaluation of current block and construction of region. The results of computer simulation show the proposed method is superior than the existing methods in aspect of coding efficiency.

  • PDF

의료 영상을 이용한 인체 역학적 구조물 특징 추출 및 영상 분할 (Feature Extraction and Image Segmentation of Mechanical Structures from Human Medical Images)

  • 호동수;김성현;김도일;서태석;최보영;김의녕;이진희;이형구
    • 한국의학물리학회지:의학물리
    • /
    • 제15권2호
    • /
    • pp.112-119
    • /
    • 2004
  • 인체에 대한 표준데이터를 사용하지 않고 실제 한국인의 의료 영상 데이터를 사용하여 인체 모델을 만들고자 하였다. 먼저 CT와 MRI를 통해 획득한 인체의 의료영상에 대한 특징을 분석하였다. 인체의 해부학적인 구성요소에 대해 CT는 gray level로 MR 영상은 펄스시퀀스 별로 분석하여 특징을 추출하였다. 해부학적 구성요소의 특징을 바탕으로 인체 각 부위별로 영상을 얻기 위해 CT와 MR 영상에 대해 영상분할을 수행하였다. 인체의 부위 중 특히 인체의 네 가지 인체 역학적 구조물인 골조직, 근육, 인대, 건 부위를 CT와 MR 영상을 이용하여 구별하였다. 이미지 분할 방법에는 일반적으로 많이 사용되고 있는 경계선 검출(Edge detection), 영역 선택(Region Growing), 문턱치(Intensity Threshold) 방법 등을 선택하여 인체별로 가장 적합한 알고리듬을 적용시켰다. Head/Neck 부위에 대한 영상 분할 결과를 인체 역학적 구성요소별로 3차원 영상으로 재구성하였다.

  • PDF

돌외의 Saponin 성분에 관한 연구 (Saponins of Gynostemma pentaphyllum)

  • 임웅규;김해중
    • 한국작물학회지
    • /
    • 제31권2호
    • /
    • pp.249-252
    • /
    • 1986
  • 돌외의 사포닌 성분을 비교하기 위하여 경남 거창지방과 일본 덕도지방에서 수집한 돌외의 잎과 줄기에서 사포닌을 추출 정제하여 HPLC로 분석하고, 인삼의 사포닌 성분과 비교하기 위하여 HPLC의 크로마토그램의 retention time에 의하여 비교하였다. 돌외의 사포닌 성분을 인삼의 사포닌 성분과 달랐으며, 두 지방에서 수집한 돌외의 사포닌 성분은 서로 비슷하였다. 사포닌의 함량은 거창지방에서 수집한 돌외가 일본 덕도지방의 것보다 0.26 % 더 많았다.

  • PDF

A Fast Lower Extremity Vessel Segmentation Method for Large CT Data Sets Using 3-Dimensional Seeded Region Growing and Branch Classification

  • Kim, Dong-Sung
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권5호
    • /
    • pp.348-354
    • /
    • 2008
  • Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes. Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image data sets of lower extremities.

SEGMENTATION AND EXTRACTION OF TEETH FROM 3D CT IMAGES

  • Aizawa, Mitsuhiro;Sasaki, Keita;Kobayashi, Norio;Yama, Mitsuru;Kakizawa, Takashi;Nishikawa, Keiichi;Sano, Tsukasa;Murakami, Shinichi
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.562-565
    • /
    • 2009
  • This paper describes an automatic 3-dimensional (3D) segmentation method for 3D CT (Computed Tomography) images using region growing (RG) and edge detection techniques. Specifically, an augmented RG method in which the contours of regions are extracted by a 3D digital edge detection filter is presented. The feature of this method is the capability of preventing the leakage of regions which is a defect of conventional RG method. Experimental results applied to the extraction of teeth from 3D CT data of jaw bones show that teeth are correctly extracted by the proposed method.

  • PDF

퍼지 이론을 이용한 의료 영상 특징 추출에 관한 연구 (A study on segmentation of medical image using fuzzy set theory)

  • 김형석;한영오;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.741-745
    • /
    • 1991
  • This paper describes a feature extraction in digitized chest X-ray image and CT head Image. There are Extraction, Thresholding, Region G rowing, Split-Merge and Relaxation in feature extraction technique. In this study, Region Growing System was realized and Fuzzy Set Theory was applied in order to extract the vague region which the conventional method has difficulties in extracting. The performance of proposed algorithm was proved by being applied to chest X-ray image and CT head image.

  • PDF