This paper presents a highly fast and accurate facial region extraction method by using the skin-color-reference map and motion information. First, we construct the robust skin-color-reference map and eliminate the background in image by this map. Additionally, we use the motion information for accurate and fast detection of facial region in image sequences. Then we further apply region growing in the remaining areas with the aid of proposed criteria. The simulation results show the improvement in execution time and accurate detection.
Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.
The smart product market is growing year by year and is being used in many areas. There are various ways of interacting with smart products and users by inputting voice recognition, touch and finger movements. It is most important to detect an accurate hand region as a whole step to recognize hand movement. In this paper, we propose a method to detect accurate hand region in real time in various environments. A conventional method of detecting a hand region includes a method using depth information of a multi-sensor camera, a method of detecting a hand through machine learning, and a method of detecting a hand region using a color model. Among these methods, a method using a multi-sensor camera or a method using a machine learning requires a large amount of calculation and a high-performance PC is essential. Many computations are not suitable for embedded systems, and high-end PCs increase or decrease the price of smart products. The algorithm proposed in this paper detects the hand region using the color model, corrects the problems of the existing hand detection algorithm, and detects the accurate hand region based on various experimental environments.
간 전이 암은 이전에는 수술을 통한 외과적 절제가 주요 치료기법이었지만 방사선 치료 기법의 발전으로 인해 점차 방사선치료의 시행이 늘어나고 있다. 18F-FDG PET 영상은 간 전이 암 진단 시 더욱 우세한 민감도와 특이도를 보이며, 치료계획용 CT 영상과 더불어 종양조직의 위치를 정의하는 중요한 영상장비로 자리매김하고 있다. 본 연구에서는 간 전이 암의 18F-FDG PET 영상에 나타난 종양영역을 영상분할기법 적용하였으며 PET영상의 여러 인자들이 영상분할기법들에 미치는 영향을 알아보았다. 2009년부터 2012년까지 방사선 치료를 받은 간전이 환자들 중 18F-FDG PET/CT 촬영을 시행한 13명의 환자들의 치료계획용 CT와 PET/CT 영상을 얻었다. 그 뒤 PET 영상의 관심영역을 설정하기 위하여 3가지 영상 분할 기법인 상대적문턱기법, 기울기기법, 영역성장기법을 적용하였다. 이 결과들을 바탕으로 GTV와 각 영상 기법으로 구현된 종양 영역과 부피 비교를 시행하였으며 영상 분할 기법에 영향을 미치는 영상인자들과의 관계를 회귀 분석하였다. GTV (Gross Tumor Volume)의 평균 부피는 $60.9{\pm}65.9$ cc이며, 40% 상대적문턱값 기법은 $22.43{\pm}35.3$ cc, 50% 상대적문턱값 기법은 $10.11{\pm}17.9$ cc, 영역성장기법은 $32.89{\pm}36.8$ cc, 기울기기법은 $30.34{\pm}35.8$ cc로 나타났다. 기존의 GTV와 가장 유사한 영역을 나타낸 영상 분할 기법은 영역성장기법 이었다. 이 영역성장기법에 영향을 미치는 영상인자를 정량적으로 분석하기 위해 표준화 계수 ${\beta}$값을 이용하였으며, GTV의 크기, $TumorSUV_{MAX/MIN}$, $SUV_{max}$, TBR 순으로 나타났다. 이와 같은 PET 영상인자를 반영한 영상 분할 기법을 이용해서 종양 영역을 정의한다면 보다 정확하고 일관성 있는 종양그리기를 수행할 수 있으며 궁극적으로 종양에 최적화된 방사선량을 투여할 수 있을 것이다.
For moving image coding, the variable size of region coding based on local motion is more efficient than fixed size of region coding. It can be applied well to complex motions and is more stable for wide motions because images are segmented according to local motions. In this paper, new image coding method using the segmentation of motion vectors is proposed. First, motion vector field is smoothed by filtering and segmented by smoothed motion vectors. The region growing method is used for decomposition of regions, and merging of regions is decided by motion vector and prediction errors of the region. Edge of regions is excluded because of the correlation of image, and neighbor motion vectors are used evaluation of current block and construction of region. The results of computer simulation show the proposed method is superior than the existing methods in aspect of coding efficiency.
인체에 대한 표준데이터를 사용하지 않고 실제 한국인의 의료 영상 데이터를 사용하여 인체 모델을 만들고자 하였다. 먼저 CT와 MRI를 통해 획득한 인체의 의료영상에 대한 특징을 분석하였다. 인체의 해부학적인 구성요소에 대해 CT는 gray level로 MR 영상은 펄스시퀀스 별로 분석하여 특징을 추출하였다. 해부학적 구성요소의 특징을 바탕으로 인체 각 부위별로 영상을 얻기 위해 CT와 MR 영상에 대해 영상분할을 수행하였다. 인체의 부위 중 특히 인체의 네 가지 인체 역학적 구조물인 골조직, 근육, 인대, 건 부위를 CT와 MR 영상을 이용하여 구별하였다. 이미지 분할 방법에는 일반적으로 많이 사용되고 있는 경계선 검출(Edge detection), 영역 선택(Region Growing), 문턱치(Intensity Threshold) 방법 등을 선택하여 인체별로 가장 적합한 알고리듬을 적용시켰다. Head/Neck 부위에 대한 영상 분할 결과를 인체 역학적 구성요소별로 3차원 영상으로 재구성하였다.
돌외의 사포닌 성분을 비교하기 위하여 경남 거창지방과 일본 덕도지방에서 수집한 돌외의 잎과 줄기에서 사포닌을 추출 정제하여 HPLC로 분석하고, 인삼의 사포닌 성분과 비교하기 위하여 HPLC의 크로마토그램의 retention time에 의하여 비교하였다. 돌외의 사포닌 성분을 인삼의 사포닌 성분과 달랐으며, 두 지방에서 수집한 돌외의 사포닌 성분은 서로 비슷하였다. 사포닌의 함량은 거창지방에서 수집한 돌외가 일본 덕도지방의 것보다 0.26 % 더 많았다.
Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes. Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image data sets of lower extremities.
This paper describes an automatic 3-dimensional (3D) segmentation method for 3D CT (Computed Tomography) images using region growing (RG) and edge detection techniques. Specifically, an augmented RG method in which the contours of regions are extracted by a 3D digital edge detection filter is presented. The feature of this method is the capability of preventing the leakage of regions which is a defect of conventional RG method. Experimental results applied to the extraction of teeth from 3D CT data of jaw bones show that teeth are correctly extracted by the proposed method.
This paper describes a feature extraction in digitized chest X-ray image and CT head Image. There are Extraction, Thresholding, Region G rowing, Split-Merge and Relaxation in feature extraction technique. In this study, Region Growing System was realized and Fuzzy Set Theory was applied in order to extract the vague region which the conventional method has difficulties in extracting. The performance of proposed algorithm was proved by being applied to chest X-ray image and CT head image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.