• Title/Summary/Keyword: Region's Image

Search Result 858, Processing Time 0.035 seconds

Usefulness of Region Cut Subtraction in Fusion & MIP 3D Reconstruction Image (Fusion & Maximum Intensity Projection 3D 재구성 영상에서 Region Cut Subtraction의 유용성)

  • Moon, A-Reum;Chi, Yong-Gi;Choi, Sung-Wook;Lee, Hyuk;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • Purpose: PET/CT combines functional and morphologic data and increases diagnostic accuracy in a variety of malignancies. Especially reconstructed Fusion PET/CT images or MIP (Maximum Intensity Projection) images from a 2-dimensional image to a 3-dimensional one are useful in visualization of the lesion. But in Fusion & MIP 3D reconstruction image, due to hot uptake by urine or urostomy bag, lesion is overlapped so it is difficult that we can distinguish the lesion with the naked eye. This research tries to improve a distinction by removing parts of hot uptake. Materials and Methods: This research has been conducted the object of patients who have went to our hospital from September 2008 to March 2009 and have a lot of urine of remaining volume as disease of uterus, bladder, rectum in the result of PET/CT examination. We used GE Company's Advantage Workstation AW4.3 05 Version Volume Viewer program. As an analysis method, set up ROI in region of removal in axial volume image, select Cut Outside and apply same method in coronal volume image. Next, adjust minimum value in Threshold of 3D Tools, select subtraction in Advanced Processing. It makes Fusion & MIP images and compares them with the image no using Region Cut Definition. Results: In Fusion & MIP 3D reconstruction image, it makes Fusion & MIP images and compares them by using Advantage Workstation AW4.3 05's Region Cut Subtraction, parts of hot uptake according to patient's urine can be removed. Distinction of lesion was clearly reconstructed in image using Region Cut Definition. Conclusion: After examining the patients showing hot uptake on account of volume of urine intake in bladder, in process of reconstruction image, if parts of hot uptake would be removed, it could contribute to offering much better diagnostic information than image subtraction of conventional method. Especially in case of disease of uterus, bladder and rectum, it will be helpful for qualitative improvement of image.

  • PDF

Color Correction Using Chromaticity of Highlight Region in Multi-Scaled Retinex

  • Jang, In-Su;Park, Kee-Hyon;Ha, Yeong-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.59-62
    • /
    • 2009
  • In general, as a dynamic range of digital still camera is narrower than a real scene‘s, it is hard to represent the shadow region of scene. Thus, multi-scaled retinex algorithm is used to improve detail and local contrast of the shadow region in an image by dividing the image by its local average images through Gaussian filtering. However, if the chromatic distribution of the original image is not uniform and dominated by a certain chromaticity, the chromaticity of the local average image depends on the dominant chromaticity of original image, thereby the colors of the resulting image are shifted to a complement color to the dominant chromaticity. In this paper, a modified multi-scaled retinex method to reduce the influence of the dominant chromaticity is proposed. In multi-scaled retinex process, the local average images obtained by Gaussian filtering are divided by the average chromaticity values of the original image in order to reduce the influence of dominant chromaticity. Next, the chromaticity of illuminant is estimated in highlight region and the local average images are corrected by the estimated chromaticity of illuminant. In experiment, results show that the proposed method improved the local contrast and detail without color distortion.

  • PDF

The Extraction of ROI(Region Of Interest)s Using Noise Filtering Algorithm Based on Domain Heuristic Knowledge in Breast Ultrasound Image (유방 초음파 영상에서 도메인 경험 지식 기반의 노이즈 필터링 알고리즘을 이용한 ROI(Region Of Interest) 추출)

  • Koo, Lock-Jo;Jung, In-Sung;Choi, Sung-Wook;Park, Hee-Boong;Wang, Gi-Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.74-82
    • /
    • 2008
  • The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound image of high resolution. As a result, efficiency of noise removal is not fine enough for low resolution image. Moreover, when ultrasound image has multiple tumors, the extraction of ROI (Region Of Interest) is not accomplished or processed by a manual selection. In this paper, our method is done 4 kinds of process for noises removal and the extraction of ROI for solving problems of restrictive automated segmentation. First process is that pixel value is acquired as matrix type. Second process is a image preprocessing phase that is aimed to maximize a contrast of image and prevent a leak of personal information. In next process, the heuristic noise filter that is based on opinion of medical specialist is applied to remove noises. The last process is to extract a tumor region by using morphology techniques. As a result, the noise is effectively eliminated in all images and a extraction of tumor regions is possible though one ultrasound image has several tumors.

Facial Region Tracking by Infra-red and CCD Color Image (CCD 컬러 영상과 적외선 영상을 이용한 얼굴 영역 검출)

  • Yoon, T.H.;Kim, K.S.;Han, M.H.;Shin, S.W.;Kim, I.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.60-62
    • /
    • 2005
  • In this study, the automatic tracking algorithm tracing a human face is proposed by using YCbCr color coordinated information and its thermal properties expressed in terms of thermal indexes in an infra-red image. The facial candidates are separately estimated in CbCr color and infra-red domain, respectively with applying the morphological image processing operations and the geometrical shape measures for fitting the elliptical features of a human face. The identification of a true face is accomplished by logical 'AND' operation between the refined image in CbCr color and infra-red domain.

  • PDF

A new fractal image decoding algorithm with fast convergence speed (고속 수렴 속도를 갖는 새로운 프랙탈 영상 복호화 알고리듬)

  • 유권열;문광석
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.74-83
    • /
    • 1997
  • In this paper, we propose a new fractal image decoding algorithm with fast convergence speed by using the data dependence and the improved initial image estimation. Conventional method for fractal image decoding requires high-degrdd computational complexity in decoding process, because of iterated contractive transformations applied to whole range blocks. On proposed method, Range of reconstruction imagte is divided into referenced range and data dependence region. And computational complexity is reduced by application of iterated contractive transformations for the referenced range only. Data dependence region can be decoded by one transformations when the referenced range is converged. In addition, more exact initial image is estimated by using bound () function in case of all, and an initial image more nearer to a fixed point is estimated by using range block division estimation. Consequently, the convergence speed of reconstruction iamge is improved with 40% reduction of computational complexity.

  • PDF

Facial Region Tracking by Utilizing Infra-Red and CCD Color Image (CCD 컬러 영상과 적외선 영상을 이용한 얼굴 영역 검출)

  • Kim K. S.;Lee J. W.;Yoon T. H.;Han M. H.;Shin S. W.;Kim I. Y.;Song C. G.
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.577-579
    • /
    • 2005
  • In this study, the automatic tracking algorithm tracing a human face is proposed by using YCbCr color coordinated information and its thermal properties expressed in terms of thermal indexes in an infra-red image. The facial candidates are separately estimated in CbCr color and infra-red domain, respectively with applying the morphological image processing operations and the geometrical shape measures for fitting the elliptical features of a human face. The identification of a true face is accomplished by logical 'AND' operation between the refined image in CbCr color and infra-red domain.

Region of Interest Detection Based on Visual Attention and Threshold Segmentation in High Spatial Resolution Remote Sensing Images

  • Zhang, Libao;Li, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1843-1859
    • /
    • 2013
  • The continuous increase of the spatial resolution of remote sensing images brings great challenge to image analysis and processing. Traditional prior knowledge-based region detection and target recognition algorithms for processing high resolution remote sensing images generally employ a global searching solution, which results in prohibitive computational complexity. In this paper, a more efficient region of interest (ROI) detection algorithm based on visual attention and threshold segmentation (VA-TS) is proposed, wherein a visual attention mechanism is used to eliminate image segmentation and feature detection to the entire image. The input image is subsampled to decrease the amount of data and the discrete moment transform (DMT) feature is extracted to provide a finer description of the edges. The feature maps are combined with weights according to the amount of the "strong points" and the "salient points". A threshold segmentation strategy is employed to obtain more accurate region of interest shape information with the very low computational complexity. Experimental statistics have shown that the proposed algorithm is computational efficient and provide more visually accurate detection results. The calculation time is only about 0.7% of the traditional Itti's model.

Segmentation of Millimeter-wave Radiometer Image via Classuncertainty and Region-homogeneity

  • Singh, Manoj Kumar;Tiwary, U.S.;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.862-864
    • /
    • 2003
  • Thresholding is a popular image segmentation method that converts a gray-level image into a binary image. The selection of optimum threshold has remained a challenge over decades. Many image segmentation techniques are developed using information about image in other space rather than the image space itself. Most of the technique based on histogram analysis information-theoretic approaches. In this paper, the criterion function for finding optimal threshold is developed using an intensity-based classuncertainty (a histogram-based property of an image) and region-homogeneity (an image morphology-based property). The theory of the optimum thresholding method is based on postulates that objects manifest themselves with fuzzy boundaries in any digital image acquired by an imaging device. The performance of the proposed method is illustrated on experimental data obtained by W-band millimeter-wave radiometer image under different noise level.

  • PDF

Contend Base Image Retrieval using Color Feature of Central Region and Optimized Comparing Bin (중앙 영역의 컬러 특징과 최적화된 빈 수를 이용한 내용기 반 영상검색)

  • Ryu, Eun-Ju;Song, Young-Jun;Park, Won-Bae;Ahn, Jae-Hyeong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.5
    • /
    • pp.581-586
    • /
    • 2004
  • In this paper, we proposed a content-based image retrieval using a color feature for central region and its optimized comparing bin method. Human's visual characteristic is influenced by existent of central object. So we supposed that object is centrally located in image and then we extract color feature at central region. When the background of image is simple, the retrieval result can be bad affected by major color of background. Our method overcome this drawback as a result of the human visual characteristic. After we transform Image into HSV color space, we extract color feature from the quantized image with 16 level. The experimental results showed that the method using the eight high rank bin is better than using the 16 bin The case which extracts the feature with image's central region was superior compare with the case which extracts the feature with the whole image about 5%.

Color image segmentation using the possibilistic C-mean clustering and region growing (Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할)

  • 엄경배;이준환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF