• Title/Summary/Keyword: Regenerative power control

Search Result 100, Processing Time 0.025 seconds

Control Algorithm of Thyristor Dual Converter Power System for Railway Power Substations (철도 변전설비를 위한 싸이리스터 이중 컨버터 전력 시스템의 제어 기법)

  • Han, Sung-Woo;Lee, Chang-Hee;Kim, Young-Woo;Moon, Dong-Ok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.573-579
    • /
    • 2015
  • A control algorithm of thyristor dual converter power system is proposed in this study for a railway power substation. The thyristor dual converter can use regenerative power without an additional system using control algorithm. An autonomous voltage and mode change method is also proposed to provide uninterrupted power to the railway. A 10 kW reduced model of the thyristor dual converter power system is built and tested to verify the validity of the proposed control algorithm.

Regeneration inverter system for DC traction system (직류 지하철 급전시스템용 회생인버터 시스템)

  • Cho, Kee-Hyun;Jang, Su-Jin;Kim, Jong-Yoon;Won, Chung-Yuen;Kim, Yong-Ki
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.28-32
    • /
    • 2007
  • In this paper, a unified regenerative inverter and control algorithm are proposed in order to perform regenerative action and active power filter action. While the regenerative mode of traction, it works as regenerative inverter to reduce a excessive power of DC bus line and the powering mode of the traction, it works as active power filter to compensate ac current distortion, power factor, and voltage unbalance. In the paper, a regeneration inverter used PWM DC/AC inverter algorithm. And an active power filter used p-q theory. We are carrying out a mode analysis of DC traction system similar to actual system with MG-set and experimenting with prototype model. Through the simulation and experiment, we were proving the regeneration inverter operation which suggested in this paper.

  • PDF

Regenerative Inverter System for DC Traction Substation with Voltage Drop Compensation Mode (전압강하 보상모드를 갖는 직류 지하철용 회생인버터 시스템)

  • Kim, Jun-Gu;Kim, Jae-Hyung;Cho, Kee-Hyun;Won, Chung-Yuen;Kim, Yong-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2008
  • In this paper, the regenerative inverter system with voltage drop compensation mode is proposed. When the main rectifier is broken, the DC traction can not be supplied the power from the utility. Actually, the reserve rectifier is mounted in the substation to prevent this accident. In this paper, the voltage drop compensation mode is added to the regenerative inverter system in order to substitute the reserve rectifier. The proposed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system. We demonstrated the effectiveness of the proposed control algorithm by using computer simulation.

A study on the Scheme of Extending Break Power Controller for Permanent Magnet Synchronous Motor(PMSM) using a Microprocessorr (마이크로프로세서를 이용한 영구자석형 동기전동기(PMSM) 제동력 확보 제어기 설계에 관한 연구)

  • Na, Seung-Kwon;Kim, Yeong-Wook;Choi, Gi-Ho;Hwang, Lark-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.524-544
    • /
    • 2013
  • In this paper, A tow system of miniature establishes each motor to individual 1C1M methods to control for a permanent magnet synchronous motors (PMSM) is constructed. You assume that is wiring having had the ability that can all absorb regenerative power which occurred when permanent magnet synchronous motors(PMSM) brake is all used to it, and to occur about agreement use scope expansion my electricity. To regenerative braking power securities of a PMSM and to stop of the bronzes my a control security, and that the electricity as you apply to vector control method and an speed sensor of controller to microprocessor, And you studied to speed, motor electricity energy control method to the algorithm and you brake a revival by regenerative braking power securities of a permanent magnet synchronous motors. It is proposed that motor control method to the algorithm you brake a revival by electricity braking power securities, you do to simulations regarding a momentum load and experiment.

Control of a Bidirectional Z-Source Inverter for Electric Vehicle Applications in Different Operation Modes

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI controllers in the IFOC technique are designed based on the required dynamic specifications. The second control strategy uses a proportional plus resonance (PR) controller in the synchronous reference frame to control the AC current for connecting the BZSI to the grid during the battery charging/discharging mode. In both control strategies, a dual loop controller is proposed to control the capacitor voltage of the BZSI. This controller is designed based on a small signal model of the BZSI using a bode diagram. MATLAB simulations and experimental results verify the validity of the proposed control strategies during motoring, regenerative braking and grid connection operations.

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.290-297
    • /
    • 2002
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as cumbined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency by adopting air flow modulation was analyzed and it is concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

  • PDF

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

Analysis of Fault Diagnosis of Regenerative Braking System for Fuel Cell Vehicle with EMB System (전기기계 브레이크가 적용된 연료전지 자동차의 회생제동 시스템의 고장해석)

  • Song, H.Y.;Choi, J.H.;Hwang, S.H.;Jeon, K.K.;Choi, S.J.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.8-13
    • /
    • 2012
  • Recently, researches about the eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. The regenerative braking system is a key technology to improve the vehicle energy utilization efficiency because it transforms the kinetic energy to the electric energy through the electric motor. This new braking system requires cooperative control between electric controlled brake and regenerative brake. Therefore, it is necessary to establish fault-diagnosis and fail-safe evaluation criteria to secure reliability of the regenerative braking system. In this paper, the failure types and causes in regenerative braking system were analyzed. The transient behavior characteristics were examined based on fault-diagnosis and fail-safe upon failure of regenerative braking system.

Development of the 1kW Class Regenerative Fuel Cell for Ground Simulator of Regeneration Electric Power System (재생전원 시스템의 지상 시뮬레이터용 1kW급 재생형 연료전지 개발)

  • Kim, Hyung-Mo;Yang, Cheol-Nam;Hong, Byung-Sun;Park, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1117-1122
    • /
    • 2006
  • The PEM type regenerative fuel cell(RFC) for the ground simulator of the regeneration electric power system has been designed, manufactured, and tested. In this paper, the designing and manufacturing procedures of the RFC were presented. Also, the performance test results were showed briefly. The RFC consists of PEM type stack, humidifier, pressure and flow control valve, storage tanks, pump and controller. The performance tests were carried out with stack and system performance tests. The performance targets are more than 50% stack efficiency, 1.5kW stack power, less 400W parasitic power in design condition. Most of the performances required are satisfied.