• Title/Summary/Keyword: Regenerative Medicine

Search Result 388, Processing Time 0.027 seconds

Identification of Genetic Causes of Inherited Peripheral Neuropathies by Targeted Gene Panel Sequencing

  • Nam, Soo Hyun;Hong, Young Bin;Hyun, Young Se;Nam, Da Eun;Kwak, Geon;Hwang, Sun Hee;Choi, Byung-Ok;Chung, Ki Wha
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.382-388
    • /
    • 2016
  • Inherited peripheral neuropathies (IPN), which are a group of clinically and genetically heterogeneous peripheral nerve disorders including Charcot-Marie-Tooth disease (CMT), exhibit progressive degeneration of muscles in the extremities and loss of sensory function. Over 70 genes have been reported as genetic causatives and the number is still growing. We prepared a targeted gene panel for IPN diagnosis based on next generation sequencing (NGS). The gene panel was designed to detect mutations in 73 genes reported to be genetic causes of IPN or related peripheral neuropathies, and to detect duplication of the chromosome 17p12 region, the major genetic cause of CMT1A. We applied the gene panel to 115 samples from 63 non-CMT1A families, and isolated 15 pathogenic or likelypathogenic mutations in eight genes from 25 patients (17 families). Of them, eight mutations were unreported variants. Of particular interest, this study revealed several very rare mutations in the SPTLC2, DCTN1, and MARS genes. In addition, the effectiveness of the detection of CMT1A was confirmed by comparing five 17p12-nonduplicated controls and 15 CMT1A cases. In conclusion, we developed a gene panel for one step genetic diagnosis of IPN. It seems that its time- and cost-effectiveness are superior to previous tiered-genetic diagnosis algorithms, and it could be applied as a genetic diagnostic system for inherited peripheral neuropathies.

A Case of Surgical Treatment of Intractable Vocal Fold Scar Using Basic Fibroblast Growth Factor and Collagen Scaffold (기본섬유아세포 성장인자와 콜라겐 골격으로 치료한 난치성 성대 반흔 1예)

  • Kang, Hyun Tag;Kim, Hyo Jun;Park, Ki Nam;Lee, Seung Won
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.30 no.2
    • /
    • pp.124-127
    • /
    • 2019
  • Vocal fold scarring is an intractable phonosurgical condition. The number of patients with vocal fold scars is increasing with the aging of society and with the increasing application of laryngeal microsurgery. Many methods are available to treat these, including voice therapy, stem cells, regenerative scaffolds, and growth factors. However, no standard treatment strategy has yet been established, and novel techniques are required. Basic fibroblast growth factor has been shown to be effective for the treatment of mild chronic vocal fold scarring. The combined use of basic fibroblast growth factor and regenerative scaffolds is currently under investigation. Here, we report a female patient in whom vocal fold scarring developed after two laryngeal microsurgeries. We performed laryngeal microsurgery to remove the scar tissue and used basic fibroblast growth factor and a collagen scaffold to promote healing. The patient's voice quality was greatly increased, and she was content with her voice after 2 years of follow-up. This is the first report of this methodology in Korea and is presented along with a review of the literature.

Use of piezoelectric surgery and Er:YAG laser:which one is more effective during impacted third molar surgery?

  • Keyhan, Seied Omid;Fallahi, Hamid Reza;Cheshmi, Behzad;Mokhtari, Sajad;Zandian, Dana;Yousefi, Parisa
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.29.1-29.10
    • /
    • 2019
  • Background: Reduction in postoperative complications is of vital considerations in impacted third molar teeth surgery. The aim of this study was to compare postoperative complications of impacted third molar surgeries for bone removal using laser, piezoelectric equipment, and conventional rotary instruments. Methods: To address the research purpose, the investigator designed the prospective double-blind clinical trial study. The sample size was determined 20 (40 teeth) by sampling formula in any kind of operation. The data of patients were obtained in the different periods in terms of pain, trismus, swelling, ecchymosis, and patient's satisfaction and then analyzed using SPSS 20 software via paired t test and Wilcoxon and McNemar's tests. Results: The pain immediately after surgery and 2 days and 7 days after surgery was higher in the laser group. The swelling immediately after surgery was more in the laser group but not significant. The amount of mouth opening immediately after surgery and 2 days and 7 days after surgery was significantly lower in the laser group than in the piezosurgery group. The total duration of surgery and duration of osteotomy were significantly longer in the laser group. The patient's satisfaction from surgery with piezosurgery was more than that with laser, but this difference was not significant. Conclusion: Due to the rising demand for impacted wisdom tooth surgery, the present study suggests that hard tissue laser surgery and piezosurgery can clear the future of impacted molar surgery, and these approaches are more efficient in reducing postoperative complications compared to the conventional surgeries.

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal;Tepekoy, Filiz;Yilmaz, Irem;Subasi, Cansu;Kabatas, Serdar
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.

Evaluation of the regenerative capacity of stem cells combined with bone graft material and collagen matrix using a rabbit calvarial defect model

  • Jun-Beom Park;InSoo Kim;Won Lee;Heesung Kim
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.6
    • /
    • pp.467-477
    • /
    • 2023
  • Purpose: The purpose of this study was to evaluate the regenerative capacity of stem cells combined with bone graft material and a collagen matrix in rabbit calvarial defect models according to the type and form of the scaffolds, which included type I collagen matrix and synthetic bone. Methods: Mesenchymal stem cells (MSCs) were obtained from the periosteum of participants. Four symmetrical 6-mm-diameter circular defects were made in New Zealand white rabbits using a trephine drill. The defects were grafted with (1) group 1: synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×105 MSCs; (2) group 2: collagen matrix and 1×105 MSCs; (3) group 3: β-TCP/HA, collagen matrix covering β-TCP/HA, and 1×105 MSCs; or (4) group 4: β-TCP/HA, chipped collagen matrix mixed with β-TCP/HA, and 1×105 MSCs. Cellular viability and cell migration rates were analyzed. Results: Uneventful healing was achieved in all areas where the defects were made at 4 weeks, and no signs of infection were identified during the healing period or at the time of retrieval. New bone formation was more evident in groups 3 and 4 than in the other groups. A densitometric analysis of the calvarium at 8 weeks post-surgery showed the highest values in group 3. Conclusions: This study showed that the highest regeneration was found when the stem cells were applied to synthetic bone along with a collagen matrix.

Subcutaneous Hemangiosarcoma: The First Report in Maltese Dog

  • Kim, Ha-Jung;Hong, Eun-Taek;Suh, Guk-Hyun
    • Journal of Veterinary Clinics
    • /
    • v.36 no.3
    • /
    • pp.169-171
    • /
    • 2019
  • Subcutanous hemangiosarcoma is rare malignant condition in dogs. An eleven-year-old neutered male Maltese was presented with multicentric cutaneous hemorrhagic nodules followed by lethargy. The patient showed regenerative anemia and thrombocytopenia with skyrocketing D-dimer, indicating that he had disseminated intravascular coagulation (DIC) on progress. Fine needle aspiration, histopathology, X-ray, and computed tomographic scanning ultimately diagnosed this patient as subcutaneous hemangiosarcoma with disseminated metastasis to the body. Unfortunately, the dog died due to side effects of anti-thrombotic therapy for DIC. This case report described a rare subcutaneous hemangiosarcoma in a Maltese dog.

Recent Stem Cell Research on Hemorrhagic Stroke : An Update

  • Kim, Jong-Tae;Youn, Dong Hyuk;Kim, Bong Jun;Rhim, Jong Kook;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.161-172
    • /
    • 2022
  • Although technological advances and clinical studies on stem cells have been increasingly reported in stroke, research targeting hemorrhagic stroke is still lacking compared to that targeting ischemic stroke. Studies on hemorrhagic stroke are also being conducted, mainly in the USA and China. However, little research has been conducted in Korea. In reality, stem cell research or treatment is unfamiliar to many domestic neurosurgeons. Nevertheless, given the increased interest in regenerative medicine and the increase of life expectancy, attention should be paid to this topic. In this paper, we summarized pre-clinical rodent studies and clinical trials using stem cells for hemorrhagic stroke. In addition, we discussed results of domestic investigations and future perspectives on stem cell research for a better understanding.

Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases

  • Chang, Eun-Ah;Jin, Sung-Won;Nam, Myung-Hyun;Kim, Sang-Dae
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.493-501
    • /
    • 2019
  • The generation of human induced pluripotent stem cells (iPSCs) from somatic cells using gene transfer opens new areas for precision medicine with personalized cell therapy and encourages the discovery of essential platforms for targeted drug development. iPSCs retain the genome of the donor, may regenerate indefinitely, and undergo differentiation into virtually any cell type of interest using a range of published protocols. There has been enormous interest among researchers regarding the application of iPSC technology to regenerative medicine and human disease modeling, in particular, modeling of neurologic diseases using patient-specific iPSCs. For instance, Parkinson's disease, Alzheimer's disease, and spinal cord injuries may be treated with iPSC therapy or replacement tissues obtained from iPSCs. In this review, we discuss the work so far on generation and characterization of iPSCs and focus on recent advances in the use of human iPSCs in clinical setting.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Biocompatibility of two experimental scaffolds for regenerative endodontics

  • Leong, Dephne Jack Xin;Setzer, Frank C.;Trope, Martin;Karabucak, Bekir
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.98-105
    • /
    • 2016
  • Objectives: The biocompatibility of two experimental scaffolds for potential use in revascularization or pulp regeneration was evaluated. Materials and Methods: One resilient lyophilized collagen scaffold (COLL), releasing metronidazole and clindamycin, was compared to an experimental injectable poly(lactic-co-glycolic) acid scaffold (PLGA), releasing clindamycin. Human dental pulp stem cells (hDPSCs) were seeded at densities of $1.0{\times}10^4$, $2.5{\times}10^4$, and $5.0{\times}10^4$. The cells were investigated by light microscopy (cell morphology), MTT assay (cell proliferation) and a cytokine (IL-8) ELISA test (biocompatibility). Results: Under microscope, the morphology of cells coincubated for 7 days with the scaffolds appeared healthy with COLL. Cells in contact with PLGA showed signs of degeneration and apoptosis. MTT assay showed that at $5.0{\times}10^4$ hDPSCs, COLL demonstrated significantly higher cell proliferation rates than cells in media only (control, p < 0.01) or cells co-incubated with PLGA (p < 0.01). In ELISA test, no significant differences were observed between cells with media only and COLL at 1, 3, and 6 days. Cells incubated with PLGA expressed significantly higher IL-8 than the control at all time points (p < 0.01) and compared to COLL after 1 and 3 days (p < 0.01). Conclusions: The COLL showed superior biocompatibility and thus may be suitable for endodontic regeneration purposes.