• Title/Summary/Keyword: Regenerative Energy

Search Result 301, Processing Time 0.025 seconds

Energy Saving and Development of an Industrial Regenerative Oxy-Fuel Combustion Furnace for CO2 Capture (에너지 절약 및 이산화탄소 포집을 위한 축열식 순산소 연소로 개발)

  • Oh, Jeongseog;Noh, Dongsoon;Lee, Daegeun;Hong, Sungkook;Yang, Jebok;Ko, Changbok;Lee, Eunkyung
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.121-122
    • /
    • 2013
  • In recent years, the usage of fossil fuels has caused problems of climate change and global warming. Because the combustion of fossil fuels is related to the production of greenhouse gases ($CO_2$, $CH_4$, etc.), new technology in the field of combustion is needed in order to handle the crisis of climate change and the global warming. As one of the efforts to reduce the emission of greenhouse gases, the concept of regenerative oxy-fuel combustion for energy efficiency and carbon capture was suggested, In the current study, the development of an industrial regenerative oxy-fuel combustion furnace was introduced, which has been being performed at Korea Institute of Energy Research (KIER).

  • PDF

A Study of Ocean Thermal Energy Conversion Systems Using Kalina cycle and Regenerative Rankine cycle (Kalina 사이클과 재생 Rankine 사이클을 이용한 해양 온도차 발진 시스템)

  • Shin, S.H.;Jung, D.S.;Kim, C.B.;Seo, T.B.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.101-113
    • /
    • 1999
  • Thermodynamic performance of a simple Rankine cycle, regenerative Rankine cycle, and Kalina cycle for Ocean thermal Energy Conversion(OTEC) is evaluated under the same condition with various working fluids. The evaporator and condenser are modeled by a UA and LMTD method while the turbine and pump are modeled by considering isentropic efficiencies. As for the working fluids, R22, R134a, R32, propylene, ammonia are used for the Rankine cycles while ammonia/water and R32/R134a mixtures are used for Kalina cycle. Calculated results show that newly developed fluids such non-ozone depleting refrigerants as R134a and R32 perform as well as R22 and ammonia. The regenerative Rankine cycle showed a 1.2 to 2.8% increase in energy efficiency as compared to the simple Rankine cycle while the Kalina cycle with ammonia/water mixture showed a 1.8% increase in energy efficiency. The efficiency of the Kalina cycle with R32/R134a mixtures is the same as that of a simple Rankine cycle using R22. Therefore, the regenerative Rankine cycle turns out to be best choice for OTEC applications.

  • PDF

Simulation study of a regenerative inverter for absorption of regenerative energy in a DC traction substation (도시철도직류변전소의 회생전력 흡수를 위한 회생인버터 시뮬레이션)

  • Bae C. H.;Han M. S.;Kim Y. G.;Kwon S. Y.;Park H. J.
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.705-711
    • /
    • 2005
  • In DC traction substation with 12-pulse diode rectifiers, the DC line voltage tends to rise above noload voltage because it can't absorb the regenerative power caused by electric brakes of train. To solve this problem, an IGBT regenerative inverter should be installed and recycles the surplus regenerative power by delivering it. to the supply grid. In this paper, the DC traction substation equipped with a IGBT regenerative inverter is studied using computer simulation. Matlab/simulink is used to simulate the operation of regenerative inverter which injects the regenerative power into the supply grid and stabilizes the DC line voltage. It is confirmed that the high quality regenerative power is delivered to the supply grid thorough computer simulation.

  • PDF

A Research on the Regenerative Braking Algorithm considering Fuel Economy and Charging Oftenness (연비와 충전 횟수를 고려한 회생제동 알고리즘 연구)

  • Yang Horim;Jeon Soonil;Park Yeongil;Lee Jangmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.370-373
    • /
    • 2005
  • In this research, we presented the regenerative braking algorithms considering fuel economy and charging oftenness, and also analyzed these algorithms. The first algorithm was the regenerative braking algorithm for the ideal recovery of kinetic energy. The HEV using this algorithm had high fuel economy, on the other hand frequent charging was occurred. The second algorithm was the regenerative braking algorithm for reduction of the charging oftenness. Using this algorithm, the HEV had the low charging oftenness and small loss of fuel economy.

  • PDF

A Study on the Energy Saving Strategy in Electric Railway System (직류 전기철도 에너지 절감방안 연구)

  • Choi Byung-Woon;Chang Sang-Hoon;Kim Hak-Ryun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.676-681
    • /
    • 2005
  • The regenerative braked cars are being introduced in DC electric railway for energy saving. There has been a recent tendency for DC traction substation with regenerative inverter to increase in number. This is strongly related to the desire for effective utilization of electric power regenerated by DC electric cars and to the aim ensuring stable operation of regenerative braking system. The regenerative inverters DC power feed back from a generative car into AC power at a substation and supplies it to distribution lines. This paper suggest the result of characteristic analysis and capacity simulation. economical analysis in the regenerative inverter system.

  • PDF

HEATING PERFORMANCE OF AIR SOURCE HEAT PUMP WITH HEAT REGENERATIVE DEVICE USING FIBER BELT

  • Ryou, Y.S.;Chang, J.T.;Kim, Y.J.;Kang, G.C.;Yun, J.H.;Lee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.647-653
    • /
    • 2000
  • In this research the heat regenerative technology was employed to eliminate frosting on evaporator coil and improve COP of the heat pump system. This heat regenerative device(HRD) has very simple structure consisting a geared motor and a porous fiber belt passing through alternatively between cold and warm air duct. The laboratory test showed that the heat pump system with HRD yielded an impressive COP higher than 3.5 at the outside air temperature of $-7^{circ}C$ in heating mode.

  • PDF

Five-level Inverter for Excitation Control of SRM Drive

  • Oh, Seok-Gyu;Park, Sung-Jun;Ahn, Jin-Woo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.64-69
    • /
    • 2001
  • Energy recovery in the regenerative region is very important when SRM is used in traction drive, This is to reduce en-ergy loss during mechanical braking and/or to have a high efficiency drive during braking To control excitation voltage in motor operation and regenerative voltage in the generator operation in the SRM multi-level voltage control is effective The paper sug-gests multi-level inverter which is useful for motoring and regenerative operation in SRM

5-Level Inverter for Excitation Voltage Control of SRM (SRM의 여자전압제어를 위한 5-레벨 인버터)

  • Lee, S.H.;Park, S.J.;Ahn, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.294-296
    • /
    • 2000
  • Energy recovery in the regenerative region is very important when SRM(Switched Reluctance Motor) is used in traction drive. This is because that to reduce energy loss during mechanical braking and/or to have a high efficiency drive during braking. To control excitation voltage in motor operation and regenerative voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation in SRM.

  • PDF

Simulation study of a grid-connected inverter for absorption of regenerative energy in a DC traction substation (도시철도 직류변전소의 회생전력흡수를 위한 계통연계형 인버터 시뮬레이션)

  • Bae, C.H.;Han, M.S.;Jung, H.S.;Kim, Y.K.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.279-281
    • /
    • 2005
  • In DC traction substation with 12-pulse diode rectifiers, the DC line voltage tends to rise above noload voltage because it can't absorb the regenerative power caused by electric brakes of train. To solve this problem, an IGBT regenerative inverter should be installed and thus recycles the surplus regenerative power by delivering it to the supply grid. In this paper, the DC traction substation equipped with a IGBT regenerative inverter is studied using computer simulation. Matlab/simulink is used to simulate the operation of regenerative inverter which injects the regenerative power into the supply grid and stabilizes the DC line voltage. It is confirmed that the high quality regenerative power is delivered to the supply grid thorough computer simulation.

  • PDF

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF