• Title/Summary/Keyword: Regenerative Cooling(재생냉각)

Search Result 129, Processing Time 0.024 seconds

Performance Comparison between Indirect Evaporative Cooler and Regenerative Evaporative Cooler made of Plastic/Paper (플라스틱/종이 재질의 간접 증발 소자와 재생 증발 소자 성능 비교)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.88-98
    • /
    • 2016
  • The Korean summer is hot and humid, and air-conditioners consume considerable amounts of electricity. In such cases, the simultaneous use of indirect evaporative coolers may help reduce the sensible heat and save electricity. In this study, heat transfer and pressure drop characteristics of indirect or regenerative evaporative coolers made from plastic/paper are investigated. The results showed that heat and mass transfer model based on the ${\epsilon}-NTU$ method predicted the indirect evaporation efficiencies, cooling capacities and pressure drops adequately. Both for indirect or regenerative evaporative cooler, the indirect evaporation efficiency increased with increasing dry channel inlet temperature or relative humidity. The indirect evaporation efficiency of the regenerative evaporative cooler was larger than that of the indirect evaporative cooler.

A Case Study on the Design of Kerosene-LOx Liquid-Propellant Rocket Engines for Performance Enhancement (케로신-액체산소 액체로켓엔진의 성능향상 설계안 사례 조사)

  • Lee, Seon-Mi;Moon, In-Sang;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.12-15
    • /
    • 2011
  • The most widely used kerosene-LOx liquid-propellant rocket engines in these days have a similar engine schematic to those of the past because of the development cost and the reliability. The efficiency of engines could be increased by the factors such as a cooling method, engine cycles, shape of cooling channels, additional coolant and so on. In this article, it is described that some design ideas for performance enhancement by exchange kerosene with LOx of a coolant.

  • PDF

Effects of Individual Components on the System Performance in a Desiccant Cooling System (제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향)

  • Chang, Young-Soo;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.

A Study on Cooling Performance and Exergy Analysis of Desiccant Cooling System in Various Regeneration Temperature and Outdoor Air Conditions (재생온도와 외기조건 변화에 따른 제습 냉방시스템의 냉방 성능 및 엑서지 해석에 관한 연구)

  • Lee, Jang Il;Hong, Seok Min;Byun, Jae Ki;Choi, Young Don;Lee, Dae Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.413-421
    • /
    • 2014
  • Desiccant cooling system is an air conditioning system that uses evaporative cooler to cool air and it can perform cooling by using heat energy only without electrically charged cooler. Thus, it can solve many problems of present cooling system including the destruction of ozone layer due to the use of CFC[chloro fluoro carbon] affiliated refrigerants and increase of peak power during summer season. In this study, cooling performance and exergy analysis was conducted in order to increase efficiency of desiccant cooling system. Especially, using exergy analysis based on the second law of thermodynamics can resolve the issue related to system efficiency in a more fundamental way by analyzing the cause of exergy destruction both in whole system and each component. The purpose of this study is to evaluate COP[coefficient of performance], cooling capacity and exergy performance of desiccant cooling system incorporating a regenerative evaporative cooler in various regeneration temperature and outdoor air conditions.

Prediction for Heat Transfer Characteristics of Supercritical Kerosene Using Mixture Surrogate (대체 혼합물을 이용한 케로신의 초임계 열전달 특성 예측)

  • Lee, Sanghoon;Yang, Inyoung;Park, Boo-min;Lee, Jinhee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.294-296
    • /
    • 2017
  • In this study heat transfer characteristics of kerosene at supercritical condition was predicted. And a sample heat transfer calculation was performed using this result. The prediction was done by assuming kerosene as a mixture of a number of pure substances, and combining the thermodynamic properties of them, using NIST SUPERTRAPP. A regeneratively cooled supersonic combustor will be desinged using the resultant thermophysical property data of supercritical kerosene. Comparing with the combustion test results of the regenerative cooling combustor, the predicted thermophysical property data will be verified.

  • PDF

Study on Regenerative Cooling Characteristics for Rocket Engine Using LNG as a propellant (액화천연가스 로켓엔진의 재생냉각 특성 연구)

  • 장행수;한풍규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.16-17
    • /
    • 2002
  • 재생냉각은 엔진 경량화 및 높은 추력을 발생시킬 수 있으며 엔진이 장시간 작동할 경우에도 추력의 변화가 일어나지 않는 우수성으로 인해, 액체로켓엔진에서 보편적으로 사용되고 있는 냉각방식이며, 고성능 액체로켓엔진 개발에 있어서 핵심기술이다. 일반적으로 재생냉각 방식은 연소기 내벽에 형성된 냉각유로에 연료 또는 산화제를 흘려보내 고온고압의 연소실내에 온도 경계층을 생성시키면서 벽면온도를 적정온도 이내로 유지하는 것이 목적이며, 또한 냉각유로에서의 압력강하가 추진제 공급 시스템의 공급 압력의 한계값을 넘어서지 않도록 하며, 냉각후의 연료 또는 산화제의 열역학적 상태가 엔진 작동 조건에 적합하도록 제어하여야 한다.

  • PDF

Compatibility Assessment of Copper Alloy and Hydrocarbon Fuel for Regeneratively Cooled Combustion Chamber (재생냉각 연소기용 구리합금과 연료 적합성 검증시험)

  • Lim Byoung-Jik;Kim Jong-Gyu;Kang Dong-Hyuk;Kim Hong-Jip;Kim Hui-Tae;Han Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.100-109
    • /
    • 2006
  • In the regeneratively cooled combustion chambers using hydrocarbon fuels, coking occurs as the wall temperature increases which generates compounds deposition on the wall. This phenomenon reduces cooling capability of the coolant, finally it can cause damage to combustor by overheating of chamber wall. In this paper electrical heating equipment which is used for the coking experiments and the test results are introduced. The compatibilities of copper alloy with let A-1 were assessed at each condition based on the test results.

  • PDF

Experimental Study on Regenerative Cooling Characteristics for Uni-element Injector Face during prolonged Combustion Time (장시간 연소에 따른 단일 인젝터 분사기면 냉각 특성연구)

  • Jeon, Jun-Su;Shin, Hun-Cheol;Lee, Seok-Jin;Chung, Hae-Seung;Kim, Young-Wook;Ko, Young-Sung;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.399-402
    • /
    • 2006
  • The purpose of this study is to propose a method for protecting injector face for prolonged combustion time and heat flux measurement technique at the injector face. To obtain basic design data and verify the performance of the proposed method, a regenerative cooling injector face was designed and manufactured for the hot firing test. Due to the safety reason, hot fire test were performed 3, 10, 30, 60 and 120 seconds time step. The discrepancy between analytical results adapting to combustion and nozzle and experimental results is believed due to the over estimation of the convection heat transfer calculation. for the injector face, flow velocity is almost negligible, therefore radiation is more important than convection. Consecutive hot firing test during 10, 30, 60 and 120 seconds combustion time shows good repeatability.

  • PDF

Study on the Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기 연구)

  • Choi, Bong-Su;Hong, Hi-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.447-454
    • /
    • 2008
  • The regenerative evaporative cooler(REC) is to cool a stream of air using evaporative cooling effect without an increase in the humidity ratio. In the regenerative evaporative cooler, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature. Besides the cooling performance, for practical application of the regenerative evaporative cooler, the compactness of the system is also a very important factor to be considered. In this respect, three different configurations, i.e., the flat plate type, the corrugated plate type, and the finned channel type are investigated and compared for the most compact configuration. The optimal structure of each configuration is obtained individually to minimize the volume for a given effectiveness within a limit of the pressure drop. Comparing the three optimal structures, the finned channel type is found to give the most compact structure among the considered configurations. The volume of the regenerative cooler can be reduced to 1/8 by adopting the finned channel type as compared to that of the flat plate type.

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling(II) (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (II))

  • Kim, Jung-Hun;Jeong, Hea-Seung;Park, Hee-Ho;Park, Kye-Seung;Kim, Yoo;Moon, Il-Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.53-56
    • /
    • 2003
  • This paper describes the general design procedure of cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, the proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that combustion pressure and mixture ratio have an influence on the heat flux to be produced in combustion chamber.

  • PDF