Browse > Article
http://dx.doi.org/10.5762/KAIS.2016.17.1.88

Performance Comparison between Indirect Evaporative Cooler and Regenerative Evaporative Cooler made of Plastic/Paper  

Kim, Nae-Hyun (Division of Mechanical System Engineering, Incheon National University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.17, no.1, 2016 , pp. 88-98 More about this Journal
Abstract
The Korean summer is hot and humid, and air-conditioners consume considerable amounts of electricity. In such cases, the simultaneous use of indirect evaporative coolers may help reduce the sensible heat and save electricity. In this study, heat transfer and pressure drop characteristics of indirect or regenerative evaporative coolers made from plastic/paper are investigated. The results showed that heat and mass transfer model based on the ${\epsilon}-NTU$ method predicted the indirect evaporation efficiencies, cooling capacities and pressure drops adequately. Both for indirect or regenerative evaporative cooler, the indirect evaporation efficiency increased with increasing dry channel inlet temperature or relative humidity. The indirect evaporation efficiency of the regenerative evaporative cooler was larger than that of the indirect evaporative cooler.
Keywords
Indirect evaporative cooler; Regenerative evaporative cooler; Performance; Paper; Plastic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duan, Z., Zhan, C., Zhang, X., Mustafa, M. Zhao, X., Alimohammadisgvand, B. and Hasan, A., "Indirect evaporative cooling: past, present and future potentials," Renew. Sustain. Energy Rev., Vol. 16, pp. 6823-6850, 2012. DOI: http://dx.doi.org/10.1016/j.rser.2012.07.007   DOI
2 Jaber, S. and Ajib, S., "Evaporative cooling as an efficient system in Mediterranean region," Appl. Therm. Eng., Vol. 31, pp. 2590-2596, 2011. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2011.04.026   DOI
3 Caliskan, H., Dincer, I. and Hepbasil, A., "Exergoeconomic enviroecomomic and sustainability analyses of a novel air cooler," Energy Build., Vol. 55, pp. 747-756, 2012. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.03.024   DOI
4 Costello, B. and Finn, D., "Thermal effectiveness characteristics of low approach indirect evaporative cooling systems in buildings," Energy Build., Vol. 39, pp. 1235-1243, 2007. DOI: http://dx.doi.org/10.1016/j.enbuild.2007.01.003   DOI
5 Maheshwari, G. P., Al-Ragom, F. and Suri, R. K., "Energy saving potential of an indirect evaporative cooler," Appl. Energy, Vol. 69, pp. 69-76, 2001. DOI: http://dx.doi.org/10.1016/S0306-2619(00)00066-0   DOI
6 Santamouris, M. and Kolokotsa, D.. "Passive cooling dissipation techniques for buildings and other structures: the state of the art," Energy Build., Vol. 57, pp. 74-94, 2013. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.11.002   DOI
7 Watt, J. D. and Brown, W. K., Evaporative Air Conditioning Handbook, 3rd ed., The Fairmont Press Inc., 1997.
8 Pescod, D., "A heat exchanger for energy saving in an air conditioning plant," ASHRAE Trans., Vol. 85., Pt. 2, pp. 238-251, 1979.
9 Maclaine-Cross, I. L. and Banks, P. J., "A general theory of wet surface heat exchangers and its application to regenerative cooling," J. Heat Transfer, Vol. 103, pp. 578-585, 1981. DOI: http://dx.doi.org/10.1115/1.3244505
10 Kettleborough, C. F. and Hsieh, C. S., "The thermal performance of the wet surface plastic plate heat exchanger used in an indirect evaporative cooler," J. Heat Transfer, Vol. 105, pp. 366-373, 1983. DOI: http://dx.doi.org/10.1115/1.3245587   DOI
11 Parker, R. O. and Treybal, R. E., "The heat mass transfer characteristics of evaporative coolers," Chem. Eng. Prog. Symp. Ser. Vol 57, No. 32, pp. 138-149, 1962.
12 Hasan, A. an Siren, K., "Performance investigation of plain and finned tube evaporatively cooled heat exchangers," Appl. Therm. Eng., Vol. 23, No. 3, pp. 325-340, 2003. DOI: http://dx.doi.org/10.1016/S1359-4311(02)00194-1   DOI
13 Cui, X., Chua, K. J., Islam, M. R. and Yang, W. M., "Fundamental formulation of a modified LMTD method to study indirect evaporative heat exchangers," Energy Conservation Management, Vol. 88, pp. 372-381, 2014. DOI: http://dx.doi.org/10.1016/j.enconman.2014.08.056   DOI
14 Zalewski, W. and Gryglaszewski, P. A., "Mathematical model of heat and mass transfer processes in evaporative coolers," Chem. Eng. Process, Vol. 36, No. 4, pp. 271-280, 1977. DOI: http://dx.doi.org/10.1016/S0255-2701(97)00006-8   DOI
15 Ren, C. and Yang, H., "An analytical model for the heat and mass transfer processes in indirect evaporative cooling with parallel/counter flow configurations," Int. J. Heat Mass Transfer, Vol. 49, pp. 617-627, 2006. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.08.019   DOI
16 Hasan, A., "Going below the wet-bulb temperature by indirect evaporative cooling: Analysis using a modified ${\epsilon}$-NTU method," Appl. Energy, Vol. 89, pp. 237-245, 2012. DOI: http://dx.doi.org/10.1016/j.apenergy.2011.07.005   DOI
17 Riangvilaikul, B. and Kumar, S., "An experimental study of a novel dew point evaporative cooling system," Energy Build., Vol. 42, pp. 637-644, 2010. DOI: http://dx.doi.org/10.1016/j.enbuild.2010.07.020   DOI
18 Zhao, X., Liu, S. and Riffat, S. B., "Comparative study of heat and mass exchanging materials for indirect evaporative cooling systems," Build. Environ., Vol. 43, No. 11, pp. 1902-1911, 2008. DOI: http://dx.doi.org/10.1016/j.buildenv.2007.11.009   DOI
19 KS M 896, Paper and plate - Measurement of water absorption rate in water, 2013.
20 ASHRAE Standard 41.1, Standard Method for Temperature Measurement, ASHRAE, 1986.
21 ASHRAE Standard 41.2, "Standard Method for Laboratory Air-Flow Measurement, ASHRAE, 1987.
22 Mirth, D. R. Ramadhyani, S. and Hittle, D. C., "Thermal performance of chilled water cooling coils at low water velocities," ASHRAE Trans., Vol. 99, Pt., 1, pp. 43-53, 1993.
23 KS C 9306, Air Conditioner, Korean Standard Association, 2010.
24 ASHRAE Standard 143, Method of test for rating indirect evaporative coolers, ASHRAE, 2007.
25 Klein S. J. and McClintock, F. A., "The description of uncertainties in a single sample experiments," Mech. Eng. Vol. 75, pp. 3-9, 1953.
26 Pirompugd, W., Wang, C. C. and Wongwises, S., "A review on reduction method for heat and mass transfer characteristics of fin-and-tube heat exchangers under dehumidifying conditions," Int. J. Heat Mass Transfer, Vol. 52, No. 9-10, pp. 2370-2378, 2009. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.10.019   DOI
27 Kim, N.-H., Oh, W.-K., Cho, J.-P., Park, W.-Y. and Youn, B., "Data reduction on the airside heat transfer coefficients of heat exchangers under dehumidifying conditions," Korean J. Air-Cond. Refrig., Vol. 15, No. 1, pp. 73-85, 2003.
28 Holman, J. P., Heat Transfer, 8th ed., McGraw-Hill Pub., 2000.
29 Shah, R. K. and London, A. L., Laminar Flow in Ducts, Academic Press, 1989.
30 Johnson, J. E., Heat and mass transfer between two fluid streams separated by a thin permeable barrier, Ph.D Thesis, Univ. Minnesota, 1997.
31 Kays, W. M. and London, A. L., Compact Heat Exchangers, 3rd ed., Krieger Pub., 1984.