• 제목/요약/키워드: Refrigerant subcooling

검색결과 61건 처리시간 0.02초

수평관에서 이원 혼합냉매의 응축 열전달계수 (Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on a Horizontal Smooth Tube)

  • 김경기;서강태;정동수
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1049-1056
    • /
    • 2000
  • In this study, condensation heat transfer coefficients(HTCs) of 2 nonazeotropic refrigerant mixtures of HFC32/HFC134a and HFC134a/HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lower than the ideal values calculated by the mass fraction weighting of the pure components HTCs. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against the predicted ones by Colburn and Drew\`s film model and a good agreement was observed.

  • PDF

R744를 2차 냉매로 사용하는 내부열교환기 부착 R404A 냉동시스템의 성능 분석 (Performance Analysis of R404A Refrigeration System with Internal Heat Exchanger Using R744 as a Secondary Refrigerant)

  • 오후규;손창효;이문빈;전민주
    • 설비공학논문집
    • /
    • 제25권10호
    • /
    • pp.548-554
    • /
    • 2013
  • A thermodynamic analysis of the R404A refrigeration system with an internal heat exchanger using R744 as a secondary refrigerant is presented in this paper to optimize the design for operating parameters of the system. The main results are summarized as follows: The COP increases with increasing subcooling and superheating degree of R404A, internal heat exchanger and compression efficiency of the R404A cycle and evaporating temperature of the R744 cycle and decreasing temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle. The mass flow ratio decreases with increasing evaporating temperature of the R744 cycle and internal heat exchanger efficiency of the R404A cycle and decreasing subcooling and superheating degree of the R744 cycle, temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle.

대체냉매 HFC-134a의 모세관 성능에 관한 수치해석적 연구 (Investigation of the Performance of the Alternative Refrigerant HFC-134a through Capillary tube : Numerical Analysis)

  • 김창년;박영무
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.169-178
    • /
    • 1993
  • Performance charts of capillary tubes for R-134a are presented. The calculation is based on the one-dimensional, adiabatic flow through capillary tube. The length of capillary tube changes with inlet pressure, mass flux, inlet quality(or subcooling), and inside diameter. The length for R-134a is shorter by 12.5~23% than that for R-12 as mass flux varies, by 13~18.5% as inlet pressure changes, by 15~15.2% as inside diameter changes, and by 3.6~20% as subcooling(or quality) changes. In general, the length for R-134a is shorter than that for R-12 by 10~20%. Pressure drop per unit length for R-134a is greater than that for R-12 since specific volume of R-134a is larger that of R-12 and vapor pressure of R-134a is greater than that of R-12. Flash point of R-134a is ahead of that of R-12.

  • PDF

열전달 촉진관에서 HFC32/HFC152a 혼합냉매의 외부 응축열전달계수 (External Condensation Heat Transfer Coefficients of HFC32/HFC152a Mixtures on Enhanced Tubes)

  • 이요한;강동규;김현주;이호생;정동수
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.315-321
    • /
    • 2014
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC152a at various compositions were measured on both 26 fpi low-fin and Turbo-C enhanced tubes, of 19.0 mm outside diameter. All data were taken at the vapor temperature of $39^{\circ}C$, with a wall subcooling of 3~8 K. Test results showed that the HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by mass fraction weighting of the pure component HTCs. Also, the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased, as the wall subcooling increased, which was due to the sudden break-up of the vapor diffusion film with an increase in wall subcooling. Finally, the heat transfer enhancement ratios for mixtures were found to be much lower, than those of pure fluids.

다양한 냉매를 적용한 내부열교환기 부착 2단 압축 냉동시스템의 성능 분석 (Performance Analysis of Two-stage Compression Refrigeration System with Internal Heat Exchanger Applied Various Refrigerants)

  • 윤정인;허성관;제재면;전민주;손창효;문정현
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.82-88
    • /
    • 2015
  • In this paper, cycle performance analysis of two-stage compression and one-stage expansion refrigeration system applied various refrigerants is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include degree of superheating and subcooling, compressor efficiency, evaporation temperature, condensing temperature, mass flow rate ration into inter-cooler, effectiveness of internal heat exchanger. The main results were summarized as follows : The COP of two-stage compression and 1-stage expansion refrigeration system increases with the increasing subcooling, mass flow rate ration of inter-cooler, evaporation temperature, but decreases with the increasing condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of two-stage compression and 1-stage expansion using substitute refrigerant have an effect on COP of this system. The COP of alternative refrigerants was higher than the COP of R22 in this study, although the COP of some mixed refrigerants were lower than COP of R22.

HCFC-22 대체냉매의 모세관 선정 (Selection of Capillary Tubes for HCFC-22 Alternative Fluids)

  • 정동수;김종보
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.435-449
    • /
    • 1995
  • In this paper, pressure drop through a capillary tube is modeled to determine the length of a capillary tube for a given set of conditions. HCFC-22 and its alternatives, HFC-134a, R407B, and R410A are used as working fluids. The conditions on which the model is tested are as follows : condensing temperature; 40.0, 45.0, 50.0, $55.0^{\circ}C$, degree of subcooling;0.0, 2.5, $5.0^{\circ}C$, capillary tube exit condition;choked flow, capillary tube diameter;1.2~2.4mm, mass flow rate;5.0~50.0g/sec. The results justify the use of Stoecker's model which yields the results very close to the values in ASHRAE handbook. While McAdams' method yields much better results than Duckler's in calculating the viscosity of the fluid in 2-phase, the friction factor suggested by Stoecker seems to be the best for capillary tubes of large diameter used in residential air conditioners. For each refrigerant, 372 data with various variables are calculated by the model. The results show that capillary tube length varies very uniformly with changes in condensing temperature and degree of subcooling. Based on this fact, regression analysis is performed to determine the dependence of mass flow rate on the length and diameter of a capillary tube, condensing temperature, and degree of subcooling. Thus determined correlation yields a mean deviation of 2.36% for 1,488 data, showing an excellent agreement.

  • PDF

External Condensation Heat Transfer Coefficients of Refrigerant Mixtures on a Smooth Tube

  • An, Kwang-Yong;Cho, Young-Mok;Seo, Kang-Tae;Jung, Dong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권3호
    • /
    • pp.1-9
    • /
    • 2001
  • In this study, condensation heat transfer coefficients (HTCs) of nonazeotropic refrigerant mixtures of HFC32/HFC 134a and HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lowed than the ideal values calculated by the mass fraction weighting of the HTCs of the pure components. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against thc predicted ones by Colburn and Drew's film model and a good agreement was observed within a deviation of 15%.

  • PDF

Test Results of Refrigerant R152a in a Mobile Air-Conditioning System

  • Shin, Jeong-Sub;Park, Won-Gu;Kim, Man-Hoe
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권2호
    • /
    • pp.44-50
    • /
    • 2008
  • This study presents test results of a mobile air-conditioning system using a potential alternative refrigerant, R152a. A series of performance tests have been carried out and cycle characteristics such as cooling capacity, energy efficiency ratio, suction and discharge pressures, and temperatures are presented, compared to those for the baseline R134a system. Tests were conducted with evaporation temperature of $5^{\circ}C$, condensation temperature of $45^{\circ}C$, subcooling temperature of $5^{\circ}C$, superheating temperature of $5^{\circ}C$, and compressor speed of 500-1500 rpm. The performance of R152a system with readjustment of an expansion valve showed better than those of R134a. The effect of oil on the pressure drop in the evaporator was also addressed.

냉매 충전량과 팽창장치 변화에 따른 열펌프 시스템의 성능특성에 관한 연구 (The Performance of a Heat Pump with a Variation of Expansion Valve at Various Charging Conditions)

  • 최종민;김용찬
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.661-666
    • /
    • 2003
  • Constant area expansion devices such as capillary tubes, short tube orifices are being gradually replaced with electronic expansion valves (EEVs) because of increasing focus on comfort and energy conservation. In this study, the performance of a water-to-water heat pump as a function of refrigerant charge is investigated in steady state, cooling mode operation with expansion devices of a capillary tube and an EEV. The performance of the capillary tube system varies drastically according to the change of refrigerant charge amount and inlet temperature of the secondary fluid in the condenser. Cooling capacity and COP of the EEV system show little dependence on the refrigerant charge, while those are strongly dependent on the secondary fluid temperature at the condenser inlet. In general, for a wide range of operating conditions the EEV system shows much higher performance as compared with the capillary tube system. The performance of the EEV system can be optimized by adjusting EEV opening to maintain a constant superheat at all test conditions.

동일한 유입온도조건에서 R410A와 R22 적용 응축기의 특성비교 (Comparison of Condenser Characteristics using R410A and R22 under the Same Inlet Temperature Condition)

  • 김창덕;이진호
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1049-1059
    • /
    • 2003
  • R410A is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the heat transfer and pressure drop for R410A flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and refrigerant mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air has dry bulb temperature of 35$^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.6 m/s. Experiments show that air velocity decreased by 16% is needed for R410A than that of R22 for subcooling temperature of 5$^{\circ}C$, which resulted in air-side pressure drop decrease of 15% for R410A as compared to R22. As a consequence, in order to provide the same design condition of a condenser, the fan requires lower electric-power consumption with R410A than that with R22.