Selection of Capillary Tubes for HCFC-22 Alternative Fluids

HCFC-22 대체냉매의 모세관 선정

  • Published : 1995.08.01

Abstract

In this paper, pressure drop through a capillary tube is modeled to determine the length of a capillary tube for a given set of conditions. HCFC-22 and its alternatives, HFC-134a, R407B, and R410A are used as working fluids. The conditions on which the model is tested are as follows : condensing temperature; 40.0, 45.0, 50.0, $55.0^{\circ}C$, degree of subcooling;0.0, 2.5, $5.0^{\circ}C$, capillary tube exit condition;choked flow, capillary tube diameter;1.2~2.4mm, mass flow rate;5.0~50.0g/sec. The results justify the use of Stoecker's model which yields the results very close to the values in ASHRAE handbook. While McAdams' method yields much better results than Duckler's in calculating the viscosity of the fluid in 2-phase, the friction factor suggested by Stoecker seems to be the best for capillary tubes of large diameter used in residential air conditioners. For each refrigerant, 372 data with various variables are calculated by the model. The results show that capillary tube length varies very uniformly with changes in condensing temperature and degree of subcooling. Based on this fact, regression analysis is performed to determine the dependence of mass flow rate on the length and diameter of a capillary tube, condensing temperature, and degree of subcooling. Thus determined correlation yields a mean deviation of 2.36% for 1,488 data, showing an excellent agreement.

Keywords

Acknowledgement

Supported by : 인하대학교