• Title/Summary/Keyword: Refrigerant Cycle Simulation

Search Result 82, Processing Time 0.022 seconds

Performance Characteristic of the Compression-Absorption Hybrid Heat Pump Cycles (흡수압축 하이브리드 히트펌프 사이클의 성능특성)

  • Yoon J. I.;Kwon O. K.;Yang Y. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 1999
  • This study describes the results of Coefficient of Performance(COP) analysis by cycle simulation for two types of absorption-compression hybrid cycle using the Water/Lithium Bromide solution pair. These types are basic hybrid systems introducing a mechanical compression process into the refrigerant vapor phase of the single effect absorption cycle. In absorption-compression hybrid cycles, coefficient of performance is improved compared with absorption cycle. Hybrid cycle Type 2 is considered as a key technology to support energy utilization system, given its capability of utilizing waste heat to drive system with a high level of efficiency.

  • PDF

A Study on the Engineering Design for 250kW-Grade Waste Gas Heat Recovery (250kW급 폐열회수 시스템 공정설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Seo, In Ho;Lee, Sang Yun;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.90-95
    • /
    • 2019
  • This study aims to gain the design data through the process design of the organic Rankine cycle, which can produce 250kW of electric power through waste heat recovery. In this study, a simulation was conducted using APSEN HYSYS to make the model for the process design of the 250kW-class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, the water steam as the cooling water for the cooler, and the refrigerant R245FA in the cycle. In the final design, it was expected and found from the simulation that the cycle efficiency was 12.62% and that 250kW of power was produced considering the margin of 80%.

Study on Simulation and Optimization of C3MR Liquefaction Cycle (천연가스 액화공정의 C3MR 냉동사이클의 공정모사와 최적화에 관한 연구)

  • Park, Chang Won;Cha, Kyu Sang;Lee, Sang Gyu;Lee, Chel Gu;Choi, Keun Hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • The LNG liquefaction plant which have a higher value-added business in the LNG value chain takes about 35% of total cost. Liquefaction process is core technology of liquefaction plant. Almost all of cost which was consumed from the liquefaction plant, using for operation energy of liquefaction process. The cost can be reduced by increasing efficiency of liquefaction cycle. C3MR(propane pre-cooled, mixed refrigerant cycle) which liquefies NG using propane and MR cycle has the high efficiency, so C3MR is mostly used liquefaction process in LNG industry. In this study, process simulation and analysis were performed for C3MR process. C3MR process variables were found through this simulation and analysis, and then the process optimization was performed. It is considered that the results of process analysis, process variables and process optimization study can be utilized to develope new liquefaction process.

Computer Simulation of Automobile Air-Conditioners (자동차 에어컨 컴퓨터 시뮬레이션)

  • Kim, H.J.;Jung, D.S.;Kim, C.B.;Kim, K.H.;Kang, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.240-253
    • /
    • 1996
  • The refrigeration cycle of automobile air-conditioners is simulated in an effort to provide a computational tool for optimum thermodynamic design. In the simulation, thermodynamic and heat transfer analysis was performed for the four major components : evaporator, condenser, compressor, and expansion valve. Effectiveness-NTU method was used for modeling both evaporator and condenser. The evaporator was divied into many subgrids and simultaneous cooling and dehumidifying analysis was performed for each grid to predict the performance accurately. Blance equations were used to model the compressor instead of using the compressor map. The performance of each component was checked against the measured data with CFC-12. Then, all the components were combined to yield the total system performance. Predicted cycle points were compared against the measured data with HFC-134a and the deviation was found to be less than 5% for all data. Finally, the system model was used to predict the performance of CFC-12 and HFC-134a for comparison. The results were very reasonable as compared to the trend deduced from the measured data.

  • PDF

Simulation of the Mixed Propane Refrigeration Cycle Using a Commercial Chemical Process Simulator (상용성 화학공정모사기를 활용한 혼합냉매 이용 냉동사이클의 전산모사)

  • Cho, Jung-Ho;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3253-3259
    • /
    • 2009
  • In this study, a computer simulation has been performed for the refrigeration cycle using mixed refrigerants in order to decrease the process stream temperature to $-20^{\circ}C$. Refrigerant supply temperature was assumed to be $-30^{\circ}C$ considering the temperature difference as $10^{\circ}C$ with process stream. Peng-Robinson equation of state model was selected for the computer simulation. A new alpha function proposed by Twu et al was used for an accurate prediction of pure component vapor pressure experimental data. One fluid mixing rules were used for the estimation of mixture vapor-liquid equilibria calculations. A commercial process simulator, PRO/II with PROVISION was utilized for the simulation of the overall refrigeration process. In order to minimize the compressor power consumption, we have optimized the two-stage compression system by varying the first stage compressor outlet pressure. Finally, we could obtain the minimum total power 755.7kW at the first stage compressor outlet pressure, 6 bar.

Cycle Analysis of Diffusion Absorption Refrigerator (확산형 흡수식 냉장고의 사이클 해석)

  • 김선창;김영률;백종현;박승상
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.817-824
    • /
    • 2002
  • A diffusion absorption refrigerator is a heat-generated refrigeration system. It uses a three-component working fluid consisting of the refrigerant (ammonia), the absorbent (water) and the auxiliary gas (typically hydrogen). This system has no moving parts and the associated noise and vibration. In this study, the operating characteristics of diffusion absorption refrigerator are investigated through cycle modeling and simulation. System parameters considered in this study are the charged concentration of ammonia aqueous solution, the concentration difference between absorber inlet and outlet and the system pressure determined by the amount of auxiliary gas charged. It was found that there exists a critical value of concentration difference that maximizes the refrigerating capacity. And the lower the system pressure, the higher the refrigerating capacity.

The study of High Efficiency Cycle Characteristics of the absorption Chiller (흡수식 냉동기 고효율화를 위한 사이클 설계)

  • Park, Chan-U
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.534-539
    • /
    • 2007
  • The objectives of the present work is to investigate the influence of the solution cooled absorber(SCA), refrigerant drain heat exchanger(RSX), exhaust gas/solution heat exchanger(ESX) and high efficiency solution heat exchanger on COP for a double-effect series-flow absorption chiller. A simulation program has been prepared for the cycle analysis of absorption chillers. As a result, Solution heat exchangers(LSX, HSX) are a most effective element for the COP than the others. In spite of the poor contribution to COP, SCA make a rule to reduce the crystallization phenomena of LiBr solution at solution heat exchanger. And the optimum solution split ratio are varied with the relative size of RSX and LSX.

  • PDF

The Study on High Efficiency Cycle Characteristics of the Absorption Chiller (흡수식 냉동기 고효율화를 위한 사이클 설계)

  • Park, Chan-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.662-668
    • /
    • 2008
  • The objectives of the present work are to investigate the influence of the solution cooled absorber(SCA), refrigerant drain heat exchanger(RSX), exhaust gas/solution heat exchanger(ESX) and high efficiency solution heat exchanger on COP for a double-effect series-flow absorption chiller. A simulation program has been prepared for the cycle analysis of absorption chillers. As a result, solution heat exchangers(LSX, HSX) are the most effective element for the COP than the others. In spite of the poor contribution to COP, SCA plays an important role to reduce the crystallization phenomena of LiBr solution at solution heat exchanger. And the optimum solution split ratio varies with the relative size of RSX and LSX.

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

Characteristic analysis of air-cooled absorption refrigeration machine (공냉식 흡수식 냉동기의 특성 해석)

  • Kwon Oh-Kyung;Moon Choon-Geun;Yang Young-Myung;Yu Sun-Il;Yoon Jung-In
    • 한국가스학회:학술대회논문집
    • /
    • 1998.09a
    • /
    • pp.249-254
    • /
    • 1998
  • This paper describes the study of developing air-cooled absorption system which uses a new working solution instead of LiBr solution to improve the performance of system. The absorption chiller-heater considered was an air-cooled, double-effect, $H_2O/LiBr+HO(CH_2)_3$ system of parallel flow type. In this study, we found out the characteristic of new working solution through the cycle simulation and compared the result that of LiBr solution to evaluate. The new working fluid has a wider working range with $8\%$ higher crystallization limit at the saturated refrigerant pressure of 0.8kPa. The optimum designs and operating conditions of air-cooled absorption system were suggested based on this cycle simulation analysis. It was demonstrated that new working fluid substantially improves the performance of the absorption refrigeration machine and is expected to increase the COP by as much as $5\%$.

  • PDF