• Title/Summary/Keyword: Reflected sound

Search Result 131, Processing Time 0.022 seconds

Road Traffic Noise in Tunnel (터널 내부의 도로교통소음)

  • 여운호;유명진
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.9-13
    • /
    • 1993
  • This paper describes the impact of reflected sound in tunnel. The impact of reflected sound is obtained from making a comparision between measurements of tunnel and bridge. Sound level of tunnel is higher than that of bridge because reflected sound is generated in tunnel. Road traffic noise cannot be freely propagated because there are many buildings in urban. Therefore, a tunnel effect is generated in urban road. The impact of reflected sound is generated not only in tunnel, but also in urban road. This study provides the basic data for tunneling work and noise control strategy in urban road.

  • PDF

Prediction of watermelon sweetness using a reflected sound (반향 소리를 이용한 기계 학습 기반 수박의 당도 예측)

  • Kim, Ki-Hoon;Woo, Ji-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.1-6
    • /
    • 2020
  • There are various approaches to evaluate a watermelon sweetness. However, there are some limitations to evaluating cost, watermelon damage, and subjective issue. In this study, we developed a novel approach to predict a watermelon sweetness using reflected sound and the machine learning algorithm. It was observed that higher brix watermelon produced higher spectral power is reflected sound. Based on the spectral-temporal features of reflected sound, the machine learning algorithms could accurately predict the sweetness group at a rate of 83.2 and 59.6 % in 2-groups and 3-groups classification, respectively.

Recognition of the Direct and Reflected Sounds in an Irregulary Formed Chamber (비정방형실내에서의 직접음과 반사음 식별에 관한 연구)

  • 차일환;박규태;임광호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 1983
  • An irregulary formed chamber was designed and constructed to recognize the direct sound radiated from the sound source and the reflected sound from the walls of the chamber. The sound signal used was tone burst in the frequency response characteristics with the signal detection after transient effect. The direct wave, transient phenomena and the primary reflected sound could be asiily distinguished each other by measurements of the arrival time of the time difference. And also noise could be easily distinguished by the same method. The result obtained can be used in industries for automatic measurement of the sound pressure reponse characteristics with respect to frequencies.

  • PDF

Efficient Sound Control Method in Virtual Environments Using Raytracing Based Diffraction

  • Kim, Jong-Hyun;Choi, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.81-87
    • /
    • 2022
  • In this paper, we propose diffraction-based sound control method to improve sound immersion in a virtual environment. The proposed technique can express the wave and flow of sound in a physical environment and a pattern similar to diffraction in real-time. Our approach determines whether there is an obstacle from the location of the sound source and then calculates the position of the new sound reflected and diffracted by the obstacle. Based on ray tracing, it determines whether or not it collides with an obstacle, and predicts the sound level of the agent behind the obstacle by using the vector reflected and refraction by the collision. In this process, the sound attenuation according to the distance/material is modeled by attenuating the size of the sound according to the number of reflected/refracted rays. As a result, the diffraction pattern expressed in the physics-based approach was expressed in real time, and it shows that the diffraction pattern also changes as the position of the obstacle is changed, thereby showing the result of naturally spreading the size of the sound. The proposed method restores the diffusion and diffraction characteristics of sound expressed in real life almost similarly.

Stereo Sound Irmge Extension Using Preredence Effect and Reflected Sounds (선착효과 및 반사음을 이용한 스테레오 음상확대)

  • 한찬호;이법기;정원식;고일석;최영수
    • The Journal of the Korea Contents Association
    • /
    • v.1 no.1
    • /
    • pp.24-31
    • /
    • 2001
  • In The AV system, to produce a realistic sound effect is very difficult because the distance between stereo speakers is very narrow. Many signal processing method of widening the sound image for spatial impression have been studied. Most of the typical methods of widening the sound image are related to the phase shifting. but this method was not effective in the concrete wall structure with high reflectivity. In this paper, we proposed an effective method of extending stereo sound image using Precedence Effect and reflected sound. In experiments we confirmed the usefulness of the method for extending stereo sound image of a conventional AV system in wider listening area of a room.

  • PDF

Topology Optimization of an Acoustic Diffuser Considering Reflected Sound Field (반사 음장을 고려한 음향 확산 구조의 위상 최적 설계)

  • Yang, Jieun;Lee, Joong Seok;Kim, Yoon Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.973-981
    • /
    • 2013
  • The main role of an acoustic diffuser is to diffuse reflected sound field spatially. Since the pioneering work of Schroeder, there have been investigations to improve its performance by using shape/sizing optimization methods. In this paper, a gradient-based topology optimization algorithm is newly presented to find the optimal distribution of reflecting materials for maximizing diffuser performance. Time-harmonic acoustic analysis in a two-dimensional acoustic domain is carried out where the domain is discretized by finite elements. Perfectly matched layers are placed to surround the domain to simulate non-reflecting boundary conditions. Design variables are assigned to each element of which material properties are interpolated between those of air and those of a rigid body. An approach to extract the reflected field from the total acoustic field is employed. To validate the effectiveness of the proposed method, design problems are solved at different frequencies. The performance of the optimized diffusers obtained by the proposed method is compared against that of the conventional Schroeder diffusers.

An Experimental Study on the Reduction Effect of Reflected Sound and Diffraction Effect by Types of Noise Barrier (방음벽 종류별 반사음 저감효과 및 회절효과에 관한 실험적 연구)

  • 김흥식
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.245-251
    • /
    • 1996
  • This study is to suggest the improved noise barrier which is harmonized with surrounding landscape and maintained the similar reduction of reflected sound and diffraction effects in comparison with the aluminum noise barrier of absorbing type which is formed a great majority in Korea. In this study the two improved models of noise barrier(Diffuse and Disperse type) were designed and compared with the noise barriers of absorbing type in the acoustics performance (the reduction of reflected sound and diffraction effects) through the field and full-scale experimental measurement. As these two models have the same acoustic performance as the noise barrier of aluminum absorbing type, it is suggested that these models can be applied to the improved noise barrier as an alteration of aluminum absorbing type barrier.

  • PDF

A Reduction Method of Reflected Waves for Investigation of Sound Source Location

  • Jang Yun-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.251-255
    • /
    • 2005
  • When the extracorporeal shock wave lithotriptor is operated, sounds can be heard. Then that might be a question about the location where the sounds come from. For the purpose of investigating the fact, we identify the location of the sounds radiated using one hydrophone. In order to carry out the experiment, it is needed to obtain direct waves from objects. Therefore, we present an experimental method to reduce reflected waves for obtaining direct waves only. The experimental results show the amplitude of waves can be attenuated about 28dB due to a silicon rubber plate of 8.5mm attached at the bottom. This is a quantified result that can expect to obtain the direct waves using the proposed method. Then, we carried out the experiment for the sound source location. From the experimental results, we can undoubtedly present a fact that the sounds are radiated from the objects to be shot due to shock waves.

Modeling of the Head-Related Transfer Functions with Optimum Reflection Wave Transfer Characteristics in Free-Field Listening over Headphones (헤드폰을 이용한 자유 음장 청취에서의 최적 반사 음파 전달 특성을 갖는 머리 전달 함수 모델링)

  • Yim, Jeong-Bin;Kim, Chun-Duck;Kang, Seong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.16-25
    • /
    • 1997
  • A new method to model the HRTF's(Head-Related Transfer Function), which could give improvement of the sound localization accuracy using the spatial effects by the reflected sound wave transfer characteristics, is proposed. When using the HRTF model having reflected sound wave transfer characteristics, the accuracy of sound localization was quite improved up to about 23%, compared with using the direct wave transfer characteristics only. Furthermore, it is verified that the spatial impression could be a factor to enhance the ability of sound localization.

  • PDF

Improved methods for measuring early reflections from Five-channel room impulse response using newly introduced Peak-Detecting algorithm

  • Kim Lae-Hoon;Doo Sejin;Oh Yangki;Lee Heewon;Sung Koeng-Mo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.439-442
    • /
    • 2000
  • When we measure the acoustical properties of a room using multiple microphone system, it is important to grasp exact time delay of the early reflections from impulse response pair. But it is often very difficult to identify the early reflections in natural shape, because a waveform may be deformed due to the characteristics of a sound source loudspeaker, microphone and reflected wall and overlapping of plural waveform. In this paper to obtain more accurate and enough early reflections, we propose the brand-new five-channel sound receiving system and introduce peak-detecting algorithm. The system has microphones mounted at the origin and four points of a regular tetrahedron. The newly introduced peak-detecting algorithm can show exact peak position in each channel, in spite of deformation due to reflected walls, loudspeaker and microphone.

  • PDF