References
- Jie, D. F., Xie, L. J., Fu, X. P., Rao, X. Q. & Ying, Y. B. (2013). Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique. Journal of Food Engineering, 118(4), 387-392. DOI:10.1016/j.jfoodeng.2013.04.027
- Jie, D. F., Zhou, W. H. & Wei, X. (2019). Nondestructive detection of maturity of watermelon by spectral characteristic using NIR diffuse transmittance technique. Scientia Horticulturae, 257. DOI:108718, 10.1016/j.scienta.2019.108718
- Fuzeng Yang, L. Y., Qing Yang & Likui Kang. (2009). Nondestructive detection of the internal quality of apple using X-ray and machine vision. LWT-Food Science and Technology, 41(9), 1720-1725. DOI:10.1007/978-1-4419-0213-9_20
- Milczarek, R. R., Saltveit, M. E., Garvey, T. C. & McCarthy, M. J. (2009). Assessment of tomato pericarp mechanical damage using multivariate analysis of magnetic resonance images. Postharvest Biology and Technology, 52(2), 189-195. DOI:10.1016/j.postharvbio.2009.01.002
- Sun, T. et al. (2010). Research advances in nondestructive determination of internal quality in watermelon/melon: A review. Journal of Food Engineering, 100(4), 569-577. DOI:10.1016/j.jfoodeng.2010.05.019
- Diezma-Iglesias, B., Ruiz-Altisent, M. & Barreiro, P. (2004). Detection of internal quality in seedless watermelon by acoustic impulse response. Biosystems Engineering, 88(2), 221-230. DOI:10.1016/j.biosystemseng.2004.03.007
- Kyriacou, M. C., Leskovar, D. I., Colla, G. & Rouphael, Y. (2018). Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. Scientia Horticulturae, 234, 393-408. DOI:10.1016/j.scienta.2018.01.032
- Shah Rizam M. Shah Baki, M. Z. M. a., Ihsan M. Yassin, Hasliza A. Hassan & Azlee Zabidi. (2010). Non-Destructive Classification of Watermelon Ripeness using MelFrequency Cepstrum Coefficients and Multilayer Perceptrons. The 2010 International Joint Conference on Neural Networks (IJCNN), 1-6. DOI:10.1109/ijcnn.2010.5596573
- Chen, X., Yuan, P. P. & Deng, X. Y. (2018). Watermelon ripeness detection by wavelet multiresolution decomposition of acoustic impulse response signals. Postharvest Biology and Technology, 142, 135-141. DOI:10.1016/j.postharvbio.2017.08.018
- Zeng, W., Huang, X. F., Arisona, S. M. & McLoughlin, I. V. (2014). Classifying watermelon ripeness by analysing acoustic signals using mobile devices. Personal and Ubiquitous Computing, 18(7), 1753-1762. DOI:10.1007/s00779-013-0706-7
- Ikeda, T., Choi, P. K., Ishii, T., Arai, I. & Osawa, M. (2015). Firmness evaluation of watermelon flesh by using surface elastic waves. Journal of Food Engineering, 160, 28-33. DOI:10.1016/j.jfoodeng.2015.03.020
- Leskovar, D., Othman, Y. & Dong, X. J. (2016). Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil & Tillage Research, 163, 266-273. DOI:10.1016/j.still.2016.06.007
- Qian, M., Huang, W. Q., Wang, Q. Y., Fan, S. X., Zhang, B. H. & Chen, L. P. (2016). Assessment of Influence Detective Position Variability on Precision of Near Infrared Models for Soluble Solid Content of Watermelon. Spectroscopy and Spectral Analysis, 36(6), 1700-1705. DOI:10.3964/j.issn.1000-0593(2016)06-1700-06
- Muller, M., Ellis, D. P. W., Klapuri, A. & Richard, G. (2011). Signal Processing for Music Analysis. IEEE Journal of Selected Topics in Signal Processing, 5(6), 1088-1110. DOI:10.1109/Jstsp.2011.2112333
- Peng, H. (2005). Feature Selection Based Mutual Information: Criteria of Max-Dependency, Max-Relevance and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1226-1238. DOI:10.1109/tpami.2005.159