• Title/Summary/Keyword: Reference trajectory

Search Result 261, Processing Time 0.025 seconds

On-line Trajectory Optimization Based on Automatic Time Warping (자동 타임 워핑에 기반한 온라인 궤적 최적화)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.105-113
    • /
    • 2017
  • This paper presents a novel on-line trajectory optimization framework based on automatic time warping, which performs the time warping of a reference motion while optimizing character motion control. Unlike existing physics-based character animation methods where sampling times for a reference motion are uniform or fixed during optimization in general, our method considers the change of sampling times on top of the dynamics of character motion in the same optimization, which allows the character to effectively respond to external pushes with optimal time warping. In order to do so, we formulate an optimal control problem which takes into account both the full-body dynamics and the change of sampling time for a reference motion, and present a model predictive control framework that produces an optimal control policy for character motion and sampling time by repeatedly solving the problem for a fixed-span time window while shifting it along the time axis. Our experimental results show the robustness of our framework to external perturbations and the effectiveness on rhythmic motion synthesis in accordance with a given piece of background music.

Fuzzy Rule Based Trajectory Control of Mobile Robot (이동용 로봇의 퍼지 기반 추적 제어)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;Choi, Hyeung-Sik;Park, Han-Il;Jang, Ha-Lyong;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.109-115
    • /
    • 2010
  • This paper deals with trajectory control of computer simulated mobile robot via fuzzy control. Mobile robot is controlled by Mamdani type fuzzy controller. Inputs of the fuzzy controller are angle between mobil robot and target, changed angle and output is the steering angle, which is control input. Fuzzy rules have seven rules and are selected by human experiential knowledge. Also we propose a scaling factors tuning scheme which is the another focus in designing fuzzy controller. In this paper, we adapt the RCGA which is well known in parameter optimization to adjust scaling factors. The simulation results show that the fuzzy control effectively realize trajectory stabilization of the mobile robot along a given reference target from various initial steering angles.

Performance Analysis of the Active SAS Autofocus Processing for UUV Trajectory Disturbances Compensation (수중무인체 궤적교란 보상을 위한 능동 SAS 자동초점처리 성능 분석)

  • Kim, Boo-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.215-222
    • /
    • 2017
  • An active synthetic aperture sonar mounted on small UUV is generated various trajectory disturbances in the traveling path by the influence of external underwater environments. That is the phase mismatch occurs in the synthetic aperture processing of the signals reflected from seabed objects and fetches the detection performance decreases. In this paper, we compensated deteriorated images by the active SAS autofocus processing using DPC and analyzed the effects of detection performance when the periodic trajectory disturbances occur in the side direction at a constant velocity and straight movement of UUV. Through simulations, the deteriorated images according to the periodic disturbance magnitudes and period variations in the platform were compensated using difference phases processing of the overlapping displaced phase centers on the adjacent transmitted ping signals, and we conformed the improved performance characteristics of azimuth resolution and detection images at 3dB reference point.

Objective Evaluation of Recurrent Neural Network Based Techniques for Trajectory Prediction of Flight Vehicles (비행체의 궤적 예측을 위한 순환 신경망 기반 기법들의 정량적 비교 평가에 관한 연구)

  • Lee, Chang Jin;Park, In Hee;Jung, Chanho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.540-543
    • /
    • 2021
  • In this paper, we present an experimental comparative study of recurrent neural network based techniques for trajectory prediction of flight vehicles. We defined and investigated various relationships between input and output under the same experimental setup. In particular, we proposed a relationship based on the relative positions of flight vehicles. Furthermore, we conducted an ablation study on the network architectures and hyperparameters. We believe that this comprehensive comparative study serves as a reference point and guide for developers in choosing an appropriate recurrent neural network based techniques for building (flight) vehicle trajectory prediction systems.

Lever Arm Compensation of Reference Trajectory for Flight Performance Evaluation of DGPS/INS installed on Aircraft (항공기에 탑재된 DGPS/INS 복합항법 장치의 비행 시험 성능 평가를 위한 기준궤적의 Lever Arm 보정)

  • Park, Ji-Hee;Lee, Seong-Woo;Park, Deok-Bae;Shin, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1086-1092
    • /
    • 2012
  • It has been studied for DGPS/INS(Differential Global Positioning System/Inertial Navigation System) to offer the more precise and reliable navigation data with the aviation industry development. The flight performance evaluation of navigation system is very significant because the reliability of navigation data directly affect the safety of aircraft. Especially, the high-level navigation system, as DGPS/INS, need more precise flight performance evaluation method. The performance analysis is performed by comparing between the DGPS/INS navigation data and reference trajectory which is more precise than DGPS/INS. The GPS receiver, which is capable of post-processed CDGPS(Carrier-phase DGPS) method, can be used as reference system. Generally, the DGPS/INS is estimated the CG(Center of Gravity) point of aircraft while the reference system is output the position of GPS antenna which is mounted on the outside of aircraft. For this reason, estimated error between DGPS/INS and reference system will include the error due to lever arm. In order to more precise performance evaluation, it is needed to compensate the lever arm. This paper presents procedure and result of flight test which includes lever arm compensation in order to verify reliability and performance of DGPS/INS more precisely.

On analysis of nonlinear impedance force control for robot manipulators (로봇의 비선형 임피던스 힘제어에 대한 연구)

  • Jung, Seul;Lee, Ji-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.560-563
    • /
    • 1997
  • The conventional impedance control has been known to have the following problems: it has lack of specifying force directly and unknown environment stiffness has to be known priori in order to specify the reference trajectory. In this paper, new impedance force control that can control a desired force directly under unknown stiffness is proposed. A new nonlinear impedance function is developed based on estimation of unknown stiffness from force and position measurements. The nonlinear characteristics of the proposed impedance function are analyzed based on unknown environment position. Simulation studies with robot manipulator are carried out to test analytical results.

  • PDF

Robust Adaptive Sliding Mode Control of Robot Manipulators Using a Model Reference Approach

  • Lee, Tae-Hwan;Bae, Jun-Kyung
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.36-44
    • /
    • 1998
  • In this paper, a robust adaptive sliding mode control algorithm for accurate trajectory tracking of robot manipulators is proposed, with unknown parameters being estimated on-line. The controller is designed based on a Lyapunov method, which consists of adaptive feed-forward compensation part and a discontinuous control part. It is shown that, in the presence of the uncertainty and the disturbances arising from the actuator or some other causes, the tracking errors is bound to converge to zero asymptotically. An illustrative example is given to demonstrate the results of the propose method.

  • PDF

MRAC방식에 의한 산업용 로보트 매니퓰레이터의 실시간 제어를 위한 견실한 제어기 설계

  • 한성현;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.160-165
    • /
    • 1989
  • This paper deals with the robust controller design of robotic manipulator to track a desired trajectory in spite of the presence of unmodelled dynamics in cause of nonlinearity and parameter uncertainty. The approach followed in this paper is based on model reference adaptive control technique and convergence on hyperstability theory but it does away with assumption that process is characterized by a linear model remaining time invariant during adaptation process. A computer simulation has been performed to demonstrate the performance of the designed control system in task coordinates for stanford manipulator with payload and disturbances.

  • PDF

Robust adaptive controller design for robot manipulator (로보트 매니퓰레이터에 대한 강건한 적응제어기 설계)

  • 안수관;배준경;박종국;박세승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.177-182
    • /
    • 1989
  • In this paper a new adaptive control algorithm is derived, with the unknown manipulator and payload parameters being estimated online. In practice, we may simplify the algorithm by not explicity estimating all unknown parameters. Further, the controller must be robust to residual time-varying disturbance, such as striction or torque ripple. Also, the reference model is a simple douple integrator and the acceleration input for robot manipulator consists of a proportion and derivative controller for trajectory tracking purposes. The validity of this control is confirmed in simulation where two-link robot manipulator shows the robust performances in spite of the existing nonlinear interaction and unknown parametrictings

  • PDF

Self-tuning pole-shift controller for direct drive arms (직접 구동 로보트 팔에 대한 자기동조 극점이동 제어기)

  • 이상철;이종용;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.194-199
    • /
    • 1989
  • In this paper, using the direct drive arm for plant, the controller is developed to track the desired trajectory in high speed and precision. For the purpose of this, through extending self-tuning pole-placement algorithm, we developed self-tuning pole-shift algorithm which is fast in response and good tracking for the reference tracking change. Developed controller is applied a three-link direct drive arm with the varing payload to track the desired tracking. And, through the computer simulation, the performance of developed controller is compared with the performance of the computed torque method and the self-tuning pole placement algorith.

  • PDF