• Title/Summary/Keyword: Reference equations

Search Result 402, Processing Time 0.025 seconds

Comparison of Artificial Neural Network and Empirical Models to Determine Daily Reference Evapotranspiration (기준 일증발산량 산정을 위한 인공신경망 모델과 경험모델의 적용 및 비교)

  • Choi, Yonghun;Kim, Minyoung;O'Shaughnessy, Susan;Jeon, Jonggil;Kim, Youngjin;Song, Weon Jung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.43-54
    • /
    • 2018
  • The accurate estimation of reference crop evapotranspiration ($ET_o$) is essential in irrigation water management to assess the time-dependent status of crop water use and irrigation scheduling. The importance of $ET_o$ has resulted in many direct and indirect methods to approximate its value and include pan evaporation, meteorological-based estimations, lysimetry, soil moisture depletion, and soil water balance equations. Artificial neural networks (ANNs) have been intensively implemented for process-based hydrologic modeling due to their superior performance using nonlinear modeling, pattern recognition, and classification. This study adapted two well-known ANN algorithms, Backpropagation neural network (BPNN) and Generalized regression neural network (GRNN), to evaluate their capability to accurately predict $ET_o$ using daily meteorological data. All data were obtained from two automated weather stations (Chupungryeong and Jangsu) located in the Yeongdong-gun (2002-2017) and Jangsu-gun (1988-2017), respectively. Daily $ET_o$ was calculated using the Penman-Monteith equation as the benchmark method. These calculated values of $ET_o$ and corresponding meteorological data were separated into training, validation and test datasets. The performance of each ANN algorithm was evaluated against $ET_o$ calculated from the benchmark method and multiple linear regression (MLR) model. The overall results showed that the BPNN algorithm performed best followed by the MLR and GRNN in a statistical sense and this could contribute to provide valuable information to farmers, water managers and policy makers for effective agricultural water governance.

Fresh and hardened properties of expansive concrete utilizing waste aluminum lathe

  • Yasin Onuralp Ozkilic;Ozer Zeybek;Ali Ihsan Celik;Essam Althaqafi;Md Azree Othuman Mydin;Anmar Dulaimi;Memduh Karalar;P. Jagadesh
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.595-608
    • /
    • 2024
  • In this study, aluminum lathe waste was used by replacing aggregates in certain proportions in order to obtain expansive concrete using recycled materials. For this reason, five different aluminum wastes of 1%, 2%, 3%, 4% and 5% were selected and also reference without aluminum waste was produced. Based on the mechanical tests conducted, which included slump, compression, splitting tensile, and flexural tests, it was evident that the workability of the material declined dramatically once the volume ratio of aluminum exceeded 2%. As determined by the compressive strength test (CST), the CS of concrete (1% aluminum lathe wastes replaced with aggregate) was 11% reducer than that of reference concrete. It was noted that the reference concrete's CS values, which did not include aluminum waste, were greater than those of the concrete that contained 5% aluminum. When comparing for splitting tensile strength (STS), it was observed that the results of STS generally follow the parallel inclination as the CS. The reduction in these strengths when 1% aluminum is utilized is less than 10%. These ratios modified 18% when flexural strength (FS) is considered. Therefore, 1% of aluminum waste is recommended to obtain expansive concrete with recycled materials considering minimum loss of strength. Moreover, Scanning Electron Microscope (SEM) analysis was performed and the results also confirm that there was expansion in the aluminum added concrete. The presence of pores throughout the concrete leads to the formation of gaps, resulting in its expansion. Additionally, for practical applications, basic equations were developed to forecast the CS, STS, and FS of the concrete with aluminum lathe waste using the data already available in the literature and the findings of the current study. In conclusion, this study establishes that aluminum lathe wastes are suitable, readily available in significant quantities, locally sourced eco-materials, cost-effective, and might be selected for construction using concrete, striking a balance among financially and ecological considerations.

A Missile Guidance Law Based on Sontag's Formula to Intercept Maneuvering Targets

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea;Choi, Kee-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.397-409
    • /
    • 2007
  • In this paper, we propose a nonlinear guidance law for missiles against maneuvering targets. First, we derive the equations of motion described in the line-of-sight reference frame and then we define the equilibrium subspace of the nonlinear system to guarantee target interception within a finite time. Using Sontag's formula, we derive a nonlinear guidance law that always delivers the state to the equilibrium subspace. If the speed of the missile is greater than that of the target, the proposed law has global capturability in that, under any initial launch conditions, the missile can intercept the maneuvering target. The proposed law also minimizes the integral cost of the control energy and the weighted square of the state. The performance of the proposed law is compared with the augmented proportional navigation guidance law by means of numerical simulations of various initial conditions and target maneuvers.

Comparative study on dynamic analyses of non-classically damped linear systems

  • Greco, Annalisa;Santini, Adolfo
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.679-698
    • /
    • 2002
  • In this paper some techniques for the dynamic analysis of non-classically damped linear systems are reviewed and compared. All these methods are based on a transformation of the governing equations using a basis of complex or real vectors. Complex and real vector bases are presented and compared. The complex vector basis is represented by the eigenvectors of the complex eigenproblem obtained considering the non-classical damping matrix of the system. The real vector basis is a set of Ritz vectors derived either as the undamped normal modes of vibration of the system, or by the load dependent vector algorithm (Lanczos vectors). In this latter case the vector basis includes the static correction concept. The rate of convergence of these bases, with reference to a parametric structural system subjected to a fixed spatial distribution of forces, is evaluated. To this aim two error norms are considered, the first based on the spatial distribution of the load and the second on the shear force at the base due to impulsive loading. It is shown that both error norms point out that the rate of convergence is strongly influenced by the spatial distribution of the applied forces.

Flutter analysis by refined 1D dynamic stiffness elements and doublet lattice method

  • Pagani, Alfonso;Petrolo, Marco;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.291-310
    • /
    • 2014
  • An advanced model for the linear flutter analysis is introduced in this paper. Higher-order beam structural models are developed by using the Carrera Unified Formulation, which allows for the straightforward implementation of arbitrarily rich displacement fields without the need of a-priori kinematic assumptions. The strong form of the principle of virtual displacements is used to obtain the equations of motion and the natural boundary conditions for beams in free vibration. An exact dynamic stiffness matrix is then developed by relating the amplitudes of harmonically varying loads to those of the responses. The resulting dynamic stiffness matrix is used with particular reference to the Wittrick-Williams algorithm to carry out free vibration analyses. According to the doublet lattice method, the natural mode shapes are subsequently used as generalized motions for the generation of the unsteady aerodynamic generalized forces. Finally, the g-method is used to conduct flutter analyses of both isotropic and laminated composite lifting surfaces. The obtained results perfectly match those from 1D and 2D finite elements and those from experimental analyses. It can be stated that refined beam models are compulsory to deal with the flutter analysis of wing models whereas classical and lower-order models (up to the second-order) are not able to detect those flutter conditions that are characterized by bending-torsion couplings.

Aerodynamic Analysis of Automotive HVAC Duct for Enhancement of Cooling/Heating Performance (자동차 냉/난방 성능 향상을 위한 공기조화 덕트의 기류해석)

  • Ju, Jae-Woo;Lee, Ki-Don;Heo, Man-Woong;Kim, Kwang-Yong;Park, June-Kyu;Yun, Jung-Hwan;Kim, Hong-Bin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • In the present work, numerical analyses of air flow in HVAC duct have been carried out for enhancement of cooling/heating performance. For the analyses, three-dimensional Reynolds-averaged Navier-Stokes equations have been solved with the shear stress transport turbulence model. The numerical results were validated in comparison with the experimental data. Based on the numerical results, the HVAC duct was designed to reduce the pressure loss. The modified duct geometry shows largely reduced pressure drop in comparison with the reference geometry. And, through modified duct shape, the performance of air conditioning has been enhanced.

Regression Studies of Dry Weight of Planktonic Biomass on Physico-chemical Parameters of Ponds with Special Reference to Fertilization

  • Mahboob, Shahid;Sheri, A.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.172-175
    • /
    • 2003
  • The regression equations of dry weight of planktonic biomass upon physico-chemical characteristics of fifteen ponds in three replicates under the influence of artificial feed, broiler manure, buffalo manure, N:P:K (25:25:0) and a control pond was obtained after one year of experimental period by using stepwise regression method. Water samples from each of the ponds were analyzed daily. However, the average values were calculated on the basis of 15 day intervals designated as fortnight. In artificial feed supplemented pond the regression of average nitrates on dry weight of planktonic biomass accounted for 71.7% of the variation in biomass. In broiler manure fertilization pond the regression of total nitrogen on dry weight of planktonic biomass held it responsible for more than 74.6% of variation in biomass. In buffalo's manure fertilized pond more than 82% of the variations in biomass were due to total nitrogen. In case of N:P:K (25:25:0) treated pond 66% of the variation in the dry weight of planktonic biomass was due to average nitrates. The control pond showed the dependence of biomass on light penetration. This equation explained more than 62 percent of variation in biomass. Other variables also showed some contribution towards variation in biomass under all the treatments in these regression studies.

Steering Characteristics of an Autonomous Tractor with Variable Distances to the Waypoint

  • Kim, Sang Cheol;Hong, Yeong Gi;Kim, Kook Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Autonomous agricultural machines that are operated in small-scale farmland frequently experience turning and changes in direction. Thus, unlike when they are operated in large-scale farmland, the steering control systems need to be controlled precisely so that travel errors can be minimized. This study aims to develop a control algorithm for improving the path tracking performance of a steering system by analyzing the effect of the setting of the waypoint, which serves as the reference point for steering when an autonomous agricultural machine moves along a path or a coordinate, on control errors. A simulation was performed by modeling a 26-hp tractor steering system and by applying the equations of motion of a tractor, with the use of a computer. Path tracking errors could be reduced using an algorithm which sets the waypoint for steering on a travel path depending on the radius of curvature of the path and which then controls the speed and steering angle of the vehicle, rather than by changing the steering speed or steering ratio which are dependent on mechanical performance.

Design of TSK Fuzzy Controller Based on TSK Fuzzy Model (TSK퍼지모델로부터 TSK퍼지제어기의 설계)

  • Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.53-67
    • /
    • 1998
  • This paper suggests a method designing the TSK fuzzy controller based on the TSK fuzzy model, which guarantees the stability of the closed loop system and makes the response of the closed loop system to be a desired one. This paper deals with the general type of TSK fuzzy model of which consequents are affine equations having a constant term. The TSK fuzzy controller suggested in this paper is designed by using the pole placement which developed for the linear systems and makes the closed loop system have the same behavior as a desired linear system. A reference input can be introduced to the suggested TSK fuzzy controller and an integral action also can be introduced. Simulation results reveal that the suggested methods are practically feasible. This paper deals with both the continuous systems and the discrete systems.

  • PDF

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.236-248
    • /
    • 2017
  • A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.