References
- Bielak, J. (1976), "Modal analysis for building-soil interaction", J. Eng. Mech. Div., ASCE, 102, 771-786.
- Caughey, T.K. (1960), "Classical normal modes in damped linear dynamic systems", J. Appl. Mech., ASME, 27,269-271. https://doi.org/10.1115/1.3643949
- Caughey, T.K. and O'Kelly, M.E.J. (1965), "Classical normal modes in damped linear dynamic systems", J.Appl. Mech., ASME, 32, 583-588. https://doi.org/10.1115/1.3627262
- Chopra, A.K. (1995), Dynamics of Structures, Theory and Applications to Earthquake Engineering, PrenticeHall, Upper Saddle River, New Jersey.
- Clough, R.W. and Penzien, J. (1993), Dynamic of Structures, Second Edition, McGraw-Hill.
- Clough, R.W. and Mojtahedi, S. (1976), "Earthquake response analysis considering non-proportional damping",Earthq. Eng. Struct. Dyn., 4, 489-496. https://doi.org/10.1002/eqe.4290040506
- Cornwell, R.E. Craig, R.R. and Johnston, C.P. (1983), "On the application of the mode acceleration method tostructural dynamics problems", Earthq. Eng. Struct. Dyn., 11, 679-688. https://doi.org/10.1002/eqe.4290110507
- Cronin, D.L. (1976), "Approximation for determining harmonically excited response of nonclassically dampedsystems", J. Eng. for Industry, 98, 43-47. https://doi.org/10.1115/1.3438868
- Duncan, P.E. and Eatock Taylor, R. (1979), "A note on the dynamic analysis of non-proportionally dampedsystems", Earthq. Eng. Struct. Dyn., 7, 99-105. https://doi.org/10.1002/eqe.4290070109
- Foss, K.A. (1958), "Coordinates which uncouple the equations of motion of damped linear dynamic systems", J.Appl. Mech., ASME, 25, 361-364.
- Hansteen, O.E. and Bell, K. (1979), "On the accuracy of mode superposition analysis in structural dynamics",Earthq. Eng. Struct. Dyn., 7, 405-411. https://doi.org/10.1002/eqe.4290070502
- Hasselman, T.K. (1976), "Modal coupling in lightly damped structures", American Institute of Aeronautics andAstronautics J., 14, 1627-1628. https://doi.org/10.2514/3.7259
- Hwang, J.H. and Ma, F. (1993), "On the approximate solution of nonclassically damped linear systems", J. Appl.Mech., ASME, 60, 695-701. https://doi.org/10.1115/1.2900860
- Ibrahimbegovic, A., Chen, H.C., Wilson, E.L. and Taylor, R.L. (1990), "Ritz method for dynamic analysis oflarge discrete linear systems with non-proportional damping", Earthq. Eng. Struct. Dyn., 19, 877-889. https://doi.org/10.1002/eqe.4290190608
- Inman, D.J. and Andry jr., A.N. (1980), "Some results on the nature of eigenvalues of discrete damped linearsystems", J. Appl. Mech., ASME, 47, 927-930. https://doi.org/10.1115/1.3153815
- Nair, S.S. and Singh, R. (1986), "Examination of the validity of proportional damping approximations with twofurther numerical indices", J. Sound Vib., 104, 348-350. https://doi.org/10.1016/0022-460X(86)90274-9
- Nour-Humid, B. and Clough, R.W. (1984), "Dynamic analysis of structures using Lanczos co-ordinates", Earthq.Eng. Struct. Dyn., 12, 365-377.
- Prater, G. and Singh, R. (1986), "Quantification of the extent of non-proportional viscous damping in discretevibratory systems", J. Sound Vib., 104, 109-125. https://doi.org/10.1016/S0022-460X(86)80134-1
- Roesset, J., Whitman, R.V. and Dobry, R. (1973), "Modal analysis for structures with foundation interaction", J.Struct. Div., ASCE, 99, 399-416.
- Shahruz, S.M. and Ma, F. (1988), "Approximate decoupling of the equations of motion of linear underdamped systems", J. Appl. Mech., ASME, 55, 716-720. https://doi.org/10.1115/1.3125855
- Veletsos, A.S. and Ventura, C.E. (1986), "Modal analysis of non-classically damped linear systems", Earthq.Eng. Struct. Dyn., 14, 217-243. https://doi.org/10.1002/eqe.4290140205
- Warburton, G.B. and Soni, S.R. (1977), "Errors in response calculations for non-classically damped structures",Earthq. Eng. Struct. Dyn., 5, 365-376. https://doi.org/10.1002/eqe.4290050404
- Warburton, G.B. (1978), "Soil-structure interaction for tower structures", Earthq. Eng. Struct. Dyn., 6, 535-556. https://doi.org/10.1002/eqe.4290060603
- Wilson, E.L. and Penzien, J. (1972), "Evaluation of orthogonal damping matrices", Int. J. Numer. Meth. Engng.,4, 5-10. https://doi.org/10.1002/nme.1620040103
- Wilson, E.L., Yuan, M. and Dickens, J.M. (1982), "Dynamic analysis by direct superposition of Ritz vectors",Earthq. Eng. Struct. Dyn., 10, 813-821. https://doi.org/10.1002/eqe.4290100606
- Xu, K. and Igusa, T. (1991), "Dynamic characteristics of non-classically damped structures", Earthq. Eng. Struct.Dyn., 20, 1127-1144. https://doi.org/10.1002/eqe.4290201204
Cited by
- COMPLEX MODE SUPERPOSITION ALGORITHM FOR SEISMIC RESPONSES OF NON-CLASSICALLY DAMPED LINEAR MDOF SYSTEM vol.8, pp.4, 2004, https://doi.org/10.1080/13632460409350503
- Completeness Verification of Complex Response Spectrum Method for Underdamped and Overdamped Multiple-Support Systems Regarding the Decoupled Damping as Mathematical Parameter without Physical Meaning vol.20, pp.7, 2016, https://doi.org/10.1080/13632469.2016.1138165
- An Efficient Approach for Seismic Analysis of Multi-Support Structures Equipped with Coupled Dampers using Spectral Moments Instead of Cross-Correlation Coefficients vol.21, pp.5, 2017, https://doi.org/10.1080/13632469.2016.1185053
- On eigenproblem solution of damped vibrations associated with gyroscopic moments vol.320, pp.3, 2009, https://doi.org/10.1016/j.jsv.2008.08.018