DOI QR코드

DOI QR Code

Fresh and hardened properties of expansive concrete utilizing waste aluminum lathe

  • Yasin Onuralp Ozkilic (Necmettin Erbakan University, Faculty of Engineering, Department of Civil Engineering) ;
  • Ozer Zeybek (Mugla Sitki Kocman University, Faculty of Engineering, Department of Civil Engineering) ;
  • Ali Ihsan Celik (Tomarza Mustafa Akincioglu Vocational School, Department of Construction, Kayseri University) ;
  • Essam Althaqafi (Civil Engineering Department, College of Engineering, King Khalid University) ;
  • Md Azree Othuman Mydin (School of Housing, Building and Planning, Universiti Sains Malaysia) ;
  • Anmar Dulaimi (College of Engineering, University of Kerbala) ;
  • Memduh Karalar (Faculty of Engineering, Department of Civil Engineering, Zonguldak Bulent Ecevit University) ;
  • P. Jagadesh (Department of Civil Engineering, Coimbatore Institute of Technology)
  • Received : 2023.02.23
  • Accepted : 2024.01.18
  • Published : 2024.03.10

Abstract

In this study, aluminum lathe waste was used by replacing aggregates in certain proportions in order to obtain expansive concrete using recycled materials. For this reason, five different aluminum wastes of 1%, 2%, 3%, 4% and 5% were selected and also reference without aluminum waste was produced. Based on the mechanical tests conducted, which included slump, compression, splitting tensile, and flexural tests, it was evident that the workability of the material declined dramatically once the volume ratio of aluminum exceeded 2%. As determined by the compressive strength test (CST), the CS of concrete (1% aluminum lathe wastes replaced with aggregate) was 11% reducer than that of reference concrete. It was noted that the reference concrete's CS values, which did not include aluminum waste, were greater than those of the concrete that contained 5% aluminum. When comparing for splitting tensile strength (STS), it was observed that the results of STS generally follow the parallel inclination as the CS. The reduction in these strengths when 1% aluminum is utilized is less than 10%. These ratios modified 18% when flexural strength (FS) is considered. Therefore, 1% of aluminum waste is recommended to obtain expansive concrete with recycled materials considering minimum loss of strength. Moreover, Scanning Electron Microscope (SEM) analysis was performed and the results also confirm that there was expansion in the aluminum added concrete. The presence of pores throughout the concrete leads to the formation of gaps, resulting in its expansion. Additionally, for practical applications, basic equations were developed to forecast the CS, STS, and FS of the concrete with aluminum lathe waste using the data already available in the literature and the findings of the current study. In conclusion, this study establishes that aluminum lathe wastes are suitable, readily available in significant quantities, locally sourced eco-materials, cost-effective, and might be selected for construction using concrete, striking a balance among financially and ecological considerations.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Kingdom of Saudi Arabia for funding this work through Large Groups RGP2/563/44.

References

  1. Aadi, A.S., Ali, T.K.M., Ali, R.A.A. and Salman, M.M. (2021), "The mechanical properties of green mortar contained aluminum wastes as substitution of sand", Materials Today: Proceedings, 42, 3002-3009.
  2. Aadi, A.S., Ali, T.K.M., Ali, R.A.A. and Salman, M.M.J.M.T.P. (2021), "The mechanical properties of green mortar contained aluminum wastes as substitution of sand", 42, 3002-3009. https://doi.org/10.1016/j.matpr.2020.12.812.
  3. Abdelli, H.E., Mokrani, L., Kennouche, S. and Aguiar, J. (2021), Mechanical and Durability Properties of Concrete Incorporating Glass and Plastic Waste.
  4. Abyzov, V. (2017), "Refractory cellular concrete based on phosphate binder from waste of production and recycling of aluminum", Procedia Eng., 206, 783-789.
  5. Abyzov, V.A. (2017), "Refractory cellular concrete based on phosphate binder from waste of production and recycling of aluminum", Procedia Eng., 206, 783-789.
  6. Alzubaidi, R. (2017), "Recycling of aluminum byproduct waste in concrete production", Jordan J. Civil Eng., 11(1).
  7. Ashok, M., Jayabalan, P., Saraswathy, V. and Muralidharan, S. (2020), "A study on mechanical properties of concrete including activated recycled plastic waste", Adv. Concrete Construct., 9(2), 207.
  8. ASTM C496/C496M-11 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International. https://doi.org/10.1520/C0496_C0496M-11.
  9. ASTM, C. (2010), "Standard test method for flexural strength of concrete (using simple beam with third-point loading)", Paper presented at the American society for testing and materials.
  10. Astm, C. (2013), 109. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2in. or [50-mm] Cube Specimens), Annual Book of ASTM Standards, USA.
  11. Bagheri, M., Lothenbach, B., Shakoorioskooie, M. and Scrivener, K. (2022), "Effect of different ions on dissolution rates of silica and feldspars at high pH", Cement Concrete Res., 152, 106644. https://doi.org/10.1016/j.cemconres.2021.106644.
  12. Basaran, B., Aksoylu, C., Ozkilic, Y.O., Karalar, M. and Hakamy, A. (2023), "Shear behaviour of reinforced concrete beams utilizing waste marble powder", Paper presented at the Structures.
  13. Belbute, J.M. and Pereira, A.M. (2020), "Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal", Energy Policy, 144, 111642.
  14. Bisht, K. and Ramana, P. (2017), "Evaluation of mechanical and durability properties of crumb rubber concrete", Construct. Build. Mater., 155, 811-817.
  15. Bisht, K., Kabeer, K.S.A. and Ramana, P. (2020), "Gainful utilization of waste glass for production of sulphuric acid resistance concrete", Construct. Build. Mater., 235, 117486.
  16. Celik, A., Yilmaz, K., Canpolat, O., Al-Mashhadani, M.M., Aygormez, Y. and Uysal, M. (2018), "High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers", Construct. Build. Mater., 187, 1190-1203.
  17. Celik, A.I., Ozkilic, Y.O., Zeybek, O., Karalar, M., Qaidi, S., Ahmad, J. and Bejinariu, C. (2022), "Mechanical behavior of crushed waste glass as replacement of aggregates", Materials, 15(22), 8093.
  18. Celik, A.I., Ozkilic, Y.O., Zeybek, O., Ozdoner, N. and Tayeh, B. A. (2022), "Performance assessment of fiberreinforced concrete produced with waste lathe fibers", Sustainability, 14(19), 11817. https://doi.org/10.3390/su141911817.
  19. Chang, Q., Liu, L., Farooqi, M.U., Thomas, B. and Ozkilic, Y.O. (2023), "Data-driven based estimation of wastederived ceramic concrete from experimental results with its environmental assessment", J. Mater. Res. Technol., 24, 6348-6368.
  20. Chetry, P. and Goyal, E.R. (2018), Influence of Marble and Aluminium Waste Powder on the Performance of Concrete.
  21. Concrete, A.I.C.C.O. and Aggregates, C. (2014), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM international.
  22. de Souza Abreu, F., Ribeiro, C.C., da Silva Pinto, J.D., Nsumbu, T. M. and Buono, V.T.L. (2020), "Influence of adding discontinuous and dispersed carbon fiber waste on concrete performance", J. Cleaner Product., 273, 122920. https://doi.org/10.1016/j.jclepro.2020.122920.
  23. Demir, T., Demirel, B. and Ozturk, M. (2022), Valorisation of the Effect of Waste Aluminum Sawdust on Carbonation of Concrete. Available at SSRN 4229543.
  24. Devi, K., Saini, B. and Aggarwal, P. (2018), "Effect of accelerators with waste material on the properties of cement paste and mortar", Comput. Concrete, 22(2), 153-159.
  25. Dong, S., Liu, G., Zhan, T., Yao, Y. and Ni, L. (2022), "Performance study of cement-based grouts based on testing and thermal conductivity modeling for groundsource heat pumps", Energy Build., 272, 112351. https://doi.org/10.1016/j.enbuild.2022.112351.
  26. Elinwa, A.U. and Mbadike, E. (2011), "The use of aluminum waste for concrete production", J. Asian Architect. Build. Eng., 10(1), 217-220. https://doi.org/10.3130/jaabe.10.217.
  27. Fayed, S. and Mansour, W. (2020), "Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties", Advances Concrete Construct., 10(4), 319.
  28. Fisonga, M., Wang, F. and Mutambo, V. (2019), "Sustainable utilization of copper tailings and tyrederived aggregates in highway concrete traffic barriers", Construct. Build. Mater., 216, 29-39. https://doi.org/10.1016/j.conbuildmat.2019.05.008.
  29. Gautam, P., Verma, A., Jha, M., Sharma, P. and Singh, T. (2018), "Effect of high temperature on physical and mechanical properties of Jalore granite", J. Appl. Geophys., 159, 460-474.
  30. Gerbelova, H., Van Der Spek, M. and Schakel, W. (2017), "Feasibility assessment of CO2 capture retrofitted to an existing cement plant: Post-combustion vs. oxy-fuel combustion technology", Energy Procedia, 114, 6141-6149.
  31. Gulmez, N. (2020), "Roles of aluminium shavings and calcite on engineering properties of cement-based composites", J. Cleaner Product., 277, 124104. https://doi.org/10.1016/j.jclepro.2020.124104.
  32. Guo, S., Dai, Q., Si, R., Sun, X. and Lu, C. (2017), "Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire", J. Cleaner Product., 148, 681-689. https://doi.org/10.1016/j.jclepro.2017.02.046.
  33. Hadzima-Nyarko, M., Nyarko, K.E., Djikanovic, D. and Brankovic, G. (2021), "Microstructural and mechanical characteristics of self-compacting concrete with waste rubber", Struct. Eng. Mech., 78(2), 175-186. https://doi.org/10.1016/j.cemconres.2014.07.004.
  34. Han, Q.-H., Wang, Y.-H., Xu, J. and Xing, Y. (2016), "Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams", Steel Compos. Struct., 22(2), 353-368. https://doi.org/10.1016/j.jclepro.2018.11.288.
  35. Han, Q.-H., Xu, J., Xing, Y. and Li, Z.-L. (2015), "Static push-out test on steel and recycled tire rubber-filled concrete composite beams", Steel Comp. Struct., 19, 843-860.
  36. Hargis, C.W., Telesca, A. and Monteiro, P.J. (2014), "Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite", Cement Concrete Res., 65, 15-20.
  37. Hay, R. and Ostertag, C.P. (2019), "On utilization and mechanisms of waste aluminium in mitigating alkalisilica reaction (ASR) in concrete", J. Cleaner Product., 212, 864-879.
  38. He, H., Shuang, E., Wen, T., Yao, J., Wang, X., He, C. and Yu, Y. (2023), "Employing novel N-doped graphene quantum dots to improve chloride binding of cement", Construct. Build. Mater., 401, 132944. https://doi.org/10.1016/j.conbuildmat.2023.132944.
  39. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021b), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  40. Huang, H., Huang, M., Zhang, W., Guo, M., Chen, Z. and Li, M. (2021a), "Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP", J. Build. Eng., 43, 103123. https://doi.org/10.1016/j.jobe.2021.103123.
  41. Jain, A., Gupta, R. and Chaudhary, S. (2019), "Performance of self-compacting concrete comprising granite cutting waste as fine aggregate", Construct. Build. Mater., 221, 539-552.
  42. Jiang, B., Xia, D., Yu, B., Xiong, R., Ao, W., Zhang, P. and Cong, L. (2019), "An environment-friendly process for limestone calcination with CO2 looping and recovery", J. Cleaner Product., 240, 118147. https://doi.org/10.1016/j.jclepro.2019.118147.
  43. Karalar, M. (2020), "Experimental and numerical investigation on flexural and crack failure of reinforced concrete beams with bottom ash and fly ash", Iran. J. Sci. Technol. Transact. Civil Eng., 44(Suppl 1), 331-354.
  44. Khouadjia, M., Bensalem, S., Belkadi, A., Kessal, O. and Sebti, M. (2023), "Influence of the shape and content of steel and aluminum fibers from industrial lathe wastes on the physico-mechanical and rheological behavior of concrete", J. Appl. Eng. Sci., 13(2), 207-214.
  45. Khyaliya, R.K., Kabeer, K.S.A. and Vyas, A.K. (2017), "Evaluation of strength and durability of lean mortar mixes containing marble waste", Construct. Build. Mater., 147, 598-607.
  46. Kuziak, J., Zalegowski, K., Jackiewicz-Rek, W. and Stanislawek, E. (2021), "Influence of the type of cement on the action of the admixture containing aluminum powder", Materials, 14(11), 2927. https://doi.org/10.3390/ma14112927.
  47. Li, H.-N., Liu, P.-F., Li, C., Li, G. and Zhang, H. (2019), "Experimental research on dynamic mechanical properties of metal tailings porous concrete", Construct. Build. Mater., 213, 20-31. https://doi.org/10.1016/j.conbuildmat.2019.04.049.
  48. Lin, J., Chen, G., Pan, H., Wang, Y., Guo, Y. and Jiang, Z. (2023), "Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A focus on cracking characteristics", Compos. Struct., 323, 117437. https://doi.org/10.1016/j.compstruct.2023.117437.
  49. Liu, Y., Leong, B. S., Hu, Z.-T. and Yang, E.-H. (2017), "Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent", Construct. Build. Mater., 148, 140-147. https://doi.org/10.1016/j.conbuildmat.2017.05.047.
  50. Lubej, S., Anzel, I., Jelusic, P., Kosec, L. and Ivanic, A. (2016), "The effect of delayed ettringite formation on fine grained aerated concrete mechanical properties", Sci. Eng. Compos. Mater., 23(3), 325-334. https://doi.org/10.1515/secm-2012-0107.
  51. Madenci, E., Fayed, S., Mansour, W. and Ozkilic, Y. O. (2022), "Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression", Steel Compos. Struct., 45(5), 653-663.
  52. Mansour, W. and Fayed, S. (2021), "Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers", Steel Compos. Struct., 41(3), 317-334.
  53. Marzouk, H. and Chen, Z. (1995), "Fracture energy and tension properties of high-strength concrete", J. Mater. Civil Eng., 7(2), 108-116.
  54. Meng, W. and Khayat, K.H. (2016), "Experimental and numerical studies on flexural behavior of ultrahighperformance concrete panels reinforced with embedded glass fiber-reinforced polymer grids", Transportat. Res. Record, 2592(1), 38-44.
  55. Meyva, Y. and Kaynak, C. (2016), "Influences of three different ethylene copolymers on the toughness and other properties of polylactide", Plastics, Rubber Compos., 45(5), 189-198.
  56. Mirza, Z.A. and Khalid, N.N. (2021), "Flexural behavior of reinforced lightweight concrete beams made with attapulgite and aluminum waste", J. Eng. Sustain. Develop., 25(2), 24-35.
  57. Mohamed, A.R., Elsalamawy, M. and Ragab, M. (2015), "Modeling the influence of limestone addition on cement hydration", Alexandria Eng. J., 54(1), 1-5.
  58. Moschner, G., Lothenbach, B., Winnefeld, F., Ulrich, A., Figi, R. and Kretzschmar, R. (2009), "Solid solution between Al-ettringite and Fe-ettringite (Ca6 [Al1- xFex (OH) 6] 2 (SO4) 3. 26H2O)", Cement Concrete Res., 39(6), 482-489.
  59. Neville, A. (1995), "Chloride attack of reinforced concrete: an overview", Mater. Struct., 28, 63-70.
  60. Noori, A.Q.N., Aliewi, J.M., Salman, H.K. and Numan, H.A. (2021), "Investigation of lightweight structural materials produced using aluminum scraps with cement mortar", J. Appl. Eng. Sci., 19(1), 252-257.
  61. Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M.D., Marto, A. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., 22(4), 425-432. https://doi.org/10.12989/sss.2018.22.4.425.
  62. Ozkilic, Y. O., Zeybek, O., Bahrami, A., Celik, A.I., Mydin, M.A. O., Karalar, M. and Jagadesh, P. (2023a), "Optimum usage of waste marble powder to reduce use of cement toward eco-friendly concrete", J. Mater. Res. Technol., 25, 4799-4819.
  63. Ozkilic, Y.O., Basaran, B., Aksoylu, C., Karalar, M. and Martins, C.H. (2023b), "Mechanical behavior in terms of shear and bending performance of reinforced concrete beam using waste fire clay as replacement of aggregate", Case Studies Construct. Mater., 18, e02104.
  64. Paktiawal, A. and Alam, M. (2021), "An experimental study on effect of aluminum composite panel waste on performance of cement concrete", Ain Shams Eng. J., 12(1), 83-98.
  65. Panditharadhya, B., Sampath, V., Mulangi, R.H. and Shankar, A. R. (2018), "Mechanical properties of pavement quality concrete with secondary aluminium dross as partial replacement for ordinary portland cement", IOP Conference Series: Materials Science and Engineering.
  66. Pang, B., Zheng, H., Jin, Z., Hou, D., Zhang, Y., Song, X. and Li, M. (2024), "Inner superhydrophobic materials based on waste fly ash: Microstructural morphology of microetching effects", Compos. Part B: Eng., 268, 111089. https://doi.org/10.1016/j.compositesb.2023.111089.
  67. Pelletier-Chaignat, L., Winnefeld, F., Lothenbach, B. and Muller, C.J. (2012), "Beneficial use of limestone filler with calcium sulphoaluminate cement", Construct. Build. Mater., 26(1), 619-627. https://doi.org/10.1016/j.conbuildmat.2011.06.065.
  68. Putrevu, M., Saravanan, T.J., Bisht, K. and Kabeer, K.S.A. (2021), "Change in fresh and rheological properties of mortar and concrete prepared using red mud-a review", IOP Conference Series: Earth and Environmental Science.
  69. Putrevu, M., Thiyagarajan, J.S., Pasla, D., Kabeer, K.S.A. and Bisht, K. (2021), "Valorization of red mud waste for cleaner production of construction materials", J. Hazardous, Toxic Radioactive Waste, 25(4), 03121002.
  70. Qi, L., Liu, J. and Liu, Q. (2016), "Compound effect of CaCO 3 and CaSO 4. 2H 2 O on the strength of steel slag-cement binding materials", Mater. Res., 19, 269-275.
  71. Rahim, N.L., Ibrahim, N.M., Salehuddin, S., Che Amat, R., Mohammed, S.A. and Hibadullah, C.R. (2014), "The utilization of aluminum waste as sand replacement in concrete", Key Eng. Mater., 594, 455-459.
  72. Shabbar, R., Nedwell, P. and Wu, Z. (2018), "Porosity and water absorption of aerated concrete with varying aluminium powder content", Int. J. Eng. Technol, 10(3), 234-238. https://doi.org/10.7763/IJET.2018.V10.1065.
  73. Siddique, S., Chaudhary, S., Shrivastava, S. and Gupta, T. (2019), "Sustainable utilisation of ceramic waste in concrete: Exposure to adverse conditions", J. Cleaner Product., 210, 246-255.
  74. Siddique, S., Shrivastava, S. and Chaudhary, S. (2018), "Evaluating resistance of fine bone china ceramic aggregate concrete to sulphate attack", Construct. Build. Mater., 186, 826-832.
  75. Siddique, S., Shrivastava, S., Chaudhary, S. and Gupta, T. (2018), "Strength and impact resistance properties of concrete containing fine bone china ceramic aggregate", Construct. Build. Mater., 169, 289-298.
  76. Singla, R., Kumar, S. and Alex, T.C. (2020), "Reactivity alteration of granulated blast furnace slag by mechanical activation for high volume usage in Portland slag cement", Waste Biomass Valorization, 11, 2983-2993.
  77. Sun, G., Kong, G., Liu, H. and Amenuvor, A.C. (2017), "Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track", Canadian Geotech. J., 54(9), 1340-1345. https://doi.org/10.1139/cgj-2015-0623.
  78. Talero, R. (2005), "Performance of metakaolin and Portland cements in ettringite formation as determined by ASTM C 452-68: kinetic and morphological differences", Cement Concrete Res., 35(7), 1269-1284.
  79. Tammam, Y., Uysal, M. and Canpolat, O. (2022), "Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers", Comput. Concrete, 29(5), 335-346.
  80. Tang, Y., Wang, Y., Wu, D., Chen, M., Pang, L., Sun, J. and Wang, X. (2023), "Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis", Rev. Adv. Mater. Sci., 62(1). https://doi.org/10.1515/rams-2023-0347.
  81. Tanwar, V., Bisht, K., Kabeer, K.S.A. and Ramana, P. (2021), "Experimental investigation of mechanical properties and resistance to acid and sulphate attack of GGBS based concrete mixes with beverage glass waste as fine aggregate", J. Build. Eng., 41, 102372.
  82. Tebbal, N. and Rahmouni, Z.E.A. (2019), "Valorization of aluminum waste on the Mechanical Performance of mortar subjected to cycles of freeze-thaw", Procedia Comput. Sci., 158, 1114-1121.
  83. Turanli, L., Shomglin, K., Ostertag, C. and Monteiro, P. (2001), "Reduction in alkali-silica expansion due to steel microfibers", Cement Concrete Res., 31(5), 825-827. https://doi.org/10.1016/S0008-8846(01)00479-3.
  84. Utepov, Y., Akhmetov, D. and Akhmatshaeva, I. (2020), "Effect of fine fillers from industrial waste and various chemical additives on the placeability of self-compacting concrete", Comput. Concrete, 25(1), 59-65.
  85. Van, L.T., Kim, D.V., Xuan, H. N., Dinh, T.V., Bulgakov, B. and Bazhenova, S. (2019), "Effect of aluminium powder on light-weight aerated concrete properties", E3S Web of Conferences.
  86. Varsavas, S.D. and Kaynak, C. (2018), "Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide", Compos. Commun., 8, 24-30.
  87. Vijayalakshmi, R. and Rajeswari, R. (2018), "Characteristic study on behaviour of lightweight concrete using aluminium dross and aluminium powder", Int. Res. J. Eng. Technol. (IRJET), 5(1).
  88. Wahsh, M., Sadek, H., Abd El-Aleem, S. and Darweesh, H. (2015), "The effect of microsilica and aluminum metal powder on the densification parameters, mechanical properties and microstructure of alumina-Mullite ceramic composites", Adv. Mater, 4(4), 80-84.
  89. Wang, M., Yang, X. and Wang, W. (2022), "Establishing a 3D aggregates database from X-ray CT scans of bulk concrete", Construct. Build. Mater., 315, 125740. doi: https://doi.org/10.1016/j.conbuildmat.2021.125740
  90. Wang, X., Yu, R., Shui, Z., Zhao, Z., Song, Q., Yang, B. and Fan, D. (2018), "Development of a novel cleaner construction product: Ultra-high performance concrete incorporating lead-zinc tailings", J. Cleaner Product., 196, 172-182. https://doi.org/10.1016/j.jclepro.2018.06.058.
  91. Wiegrink, K., Marikunte, S. and Shah, S.P. (1996), "Shrinkage cracking of high-strength concrete", Mater. J., 93(5), 409-415.
  92. Xu, Y., Xu, Y., Almuaythir, S. and Marzouki, R. (2022), "Strength and permeability of fiber-reinforced concrete incorporating waste materials", Adv. Concrete Construct., 13(2), 133.
  93. Yao, X., Lyu, X., Sun, J., Wang, B., Wang, Y., Yang, M. and Wang, X. (2023), "AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition", Construct. Build. Mater., 375, 130898. https://doi.org/10.1016/j.conbuildmat.2023.130898.
  94. Yi, C. and Ostertag, C. (2005), "Mechanical approach in mitigating alkali-silica reaction", Cement Concrete Res., 35(1), 67-75. https://doi.org/10.1016/j.cemconres.2004.02.017.
  95. Yildizel, S.A., Ozkilic, Y.O., Bahrami, A., Aksoylu, C., Basaran, B., Hakamy, A. and Arslan, M.H. (2023), "Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres", Case Studies Construct. Mater., e02227.
  96. Yusuf, M.O. (2023), "Performance of aluminium shaving waste and silica fume blended mortar", Mag. Civil Eng., 122(6), 100-112.
  97. Zhang, C. and Abedini, M. (2023), "Strain rate influences on concrete and steel material behavior, state-of-the-art review", Archives Comput. Meth. Eng., 30(7), 4271-4298. https://doi.org/10.1007/s11831-023-09937-6.
  98. Zhang, J., Zhang, M., Li, H., Gu, H., Chen, D., Yuan, W. and Li, G. (2023), "Degradation mechanism of cyclic heat storage properties of Al-Si@ Al2O3 microcapsules", Ceramics Int., 49(9), 13631-13638.
  99. Zhang, W., Kang, S., Lin, B. and Huang, Y. (2024), "Mixedmode debonding in CFRP-to-steel fiber-reinforced concrete joints", J. Compos. Construct., 28(1). https://doi.org/10.1061/JCCOF2.CCENG-43.
  100. Zhang, X., Liu, X., Zhang, S., Wang, J., Fu, L., Yang, J. and Huang, Y. (2023b), "Analysis on displacement-based seismic design method of recycled aggregate concretefilled square steel tube frame structures", Struct. Concrete, 24(3), 3461-3475. https://doi.org/10.1002/suco.202200720.
  101. Zhang, X., Zhou, G., Liu, X., Fan, Y., Meng, E., Yang, J. and Huang, Y. (2023a), "Experimental and numerical analysis of seismic behaviour for recycled aggregate concrete filled circular steel tube frames", Comput. Concrete, 31(6), 537-543. https://doi.org/10.12989/cac.2023.31.6.537.
  102. Zhou, C., Wang, J., Shao, X., Li, L., Sun, J. and Wang, X. (2023), "The feasibility of using ultra-high performance concrete (UHPC) to strengthen RC beams in torsion", J. Mater. Res. Technol., 24, 9961-9983. https://doi.org/10.1016/j.jmrt.2023.05.185.