• 제목/요약/키워드: Reference Grid

검색결과 310건 처리시간 0.026초

Stationary Frame Current Control Evaluations for Three-Phase Grid-Connected Inverters with PVR-based Active Damped LCL Filters

  • Han, Yang;Shen, Pan;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.297-309
    • /
    • 2016
  • Grid-connected inverters (GCIs) with an LCL output filter have the ability of attenuating high-frequency (HF) switching ripples. However, by using only grid-current control, the system is prone to resonances if it is not properly damped, and the current distortion is amplified significantly under highly distorted grid conditions. This paper proposes a synchronous reference frame equivalent proportional-integral (SRF-EPI) controller in the αβ stationary frame using the parallel virtual resistance-based active damping (PVR-AD) strategy for grid-interfaced distributed generation (DG) systems to suppress LCL resonance. Although both a proportional-resonant (PR) controller in the αβ stationary frame and a PI controller in the dq synchronous frame achieve zero steady-state error, the amplitude- and phase-frequency characteristics differ greatly from each other except for the reference tracking at the fundamental frequency. Therefore, an accurate SRF-EPI controller in the αβ stationary frame is established to achieve precise tracking accuracy. Moreover, the robustness, the harmonic rejection capability, and the influence of the control delay are investigated by the Nyquist stability criterion when the PVR-based AD method is adopted. Furthermore, grid voltage feed-forward and multiple PR controllers are integrated into the current loop to mitigate the current distortion introduced by the grid background distortion. In addition, the parameters design guidelines are presented to show the effectiveness of the proposed strategy. Finally, simulation and experimental results are provided to validate the feasibility of the proposed control approach.

비례공진 제어기를 이용한 단상 계통연계형 인버터의 데드타임 영향과 옵셋 오차로 인한 전류맥동 저감에 관한 연구 (A Study on Current Ripple Reduction Due to Offset Error and Dead-time Effect of Single-phase Grid-connected Inverters Based on PR Controller)

  • 성의석;황선환
    • 전력전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.201-208
    • /
    • 2015
  • The effects of dead-time and offset error, which cause output current distortion in single-phase grid-connected inverters are investigated this paper. Offset error is typically generated by measuring phase current, including the voltage unbalance of analog devices and non-ideal characteristics in current measurement paths. Dead-time inevitably occurs during generation of the gate signal for controlling power semiconductor switches. Hence, the performance of the grid-connected inverter is significantly degraded because of the current ripples. The current and voltage, including ripple components on the synchronous reference frame and stationary reference frame, are analyzed in detail. An algorithm, which has the proportional resonant controller, is also proposed to reduce current ripple components in the synchronous PI current regulator. As a result, computational complexity of the proposed algorithm is greatly simplified, and the magnitude of the current ripples is significantly decreased. The simulation and experimental results are presented to verify the usefulness of the proposed current ripple reduction algorithm.

50kW 계통연계형 디젤발전기의 모델링 및 실험 (Modeling and Experiment of 50kW Diesel Generator in Grid-connected Mode)

  • 이우종;이학주;차한주
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1347-1353
    • /
    • 2014
  • This paper researches a modeling and experiment of 50kW diesel generator in grid-connected mode. The output of diesel generator can be calculated by the phase difference between voltage and current as well as the diesel generator parameter such as mutual impedance, field current and rotor angle. Considering the different d-q frame impedance, the output of diesel generator is analyzed for equation and verified by simulation. The diesel generator modeled by considering the time delay for actuator, diesel engine and exciter. The controller of diesel generator is divided into governor and exciter. The governor consists of speed controller and active power controller, where speed controller maintains frequency as 60Hz and active power tracks active power reference. On the other hand, the exciter consists of voltage controller and reactive power controller, where voltage controller controls $380V_{LL}$ and reactive power is controlled as zero. When the active power reference is changed as 0.1pu in the grid connected mode, the active power takes 10 seconds to reach the steady state and the reactive power is maintains as zero. The 50kW diesel generator is tested and experiment results are well matched with the simulation results.

AnActive Damping Scheme Based on a Second Order Resonant Integrator for LCL-Type Grid-Connected Converters

  • Chen, Chen;Xiong, Jian;Zhang, Kai
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1058-1070
    • /
    • 2017
  • This paper proposes a novel active damping scheme to suppress LCL-filter resonance with only grid-current feedback control in grid-connected voltage-source converters. The idea comes from the concept of the model reference adaptive control (MRAC). A detailed theoretical derivation is given, and the effectiveness of this method is explained based on its physical nature. According to the control structure of this method, the active damping compensator, which is essentially a second order resonant integrator (SORI) filter, provides an effective solution to damp LCL resonance and to eliminate the need for additional sensors. Compared with extra feedback methods, the cost and complexity are reduced. A straightforward tuning procedure for the active damping method has been presented. A stability analysis is illustrated in the discrete domain while considering a one-step delay. Finally, experimental results are presented to validate the analysis and to demonstrate the good performance of the proposed method.

최소 샘플링의 고속푸리에 변환을 이용한 비정상 계통의 향상된 위상추종 및 고조파 검출 기법 (Improved Phase and Harmonic Detection Scheme using Fast Fourier Transform with Minimum Sampling Data under Distorted Grid Voltage)

  • 김현수;김경화
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.72-80
    • /
    • 2015
  • In distributed generation systems, a grid-connected inverter should operate with synchronization to grid voltage. Considering that synchronization requires the phase angle of grid voltage, a phase locked loop (PLL) scheme is often used. The synchronous reference frame phase locked loop (SRF-PLL) is generally known to provide reasonable performance under ideal grid voltage. However, this scheme indicates performance degradation under the harmonic distorted or unbalanced grid voltage condition. To overcome this limitation, this paper proposes a phase and harmonic detection method of grid voltage using fast Fourier transform (FFT). To reduce the calculation time of FFT algorithm, minimum sampling data is taken from the voltage measurement to determine the phase angle and the magnitude of harmonic components. An experimental test setup for a grid-connected inverter system has been constructed. By comparative simulations and experiments under various abnormal grid voltage conditions, the proposed scheme has been proven to effectively track the phase angle of the grid voltage.

선형 격자 형성 방정식을 이용한 직교 격자 형성에 관한 연구 (Orthogonal Grid Generation Using Linear Grid Generating Equations)

  • 이상욱;권장혁;권오준
    • 한국전산유체공학회지
    • /
    • 제5권1호
    • /
    • pp.14-21
    • /
    • 2000
  • A method of two and three dimensional orthogonal grid generation with control of spacing by using the covariant Laplace equation is presented. An important feature of the methodology is its ability to control effectively the grid spacing especially near the boundaries still maintaining good orthogonality in whole field. The method is based on the concept of decomposition of the global transformation into consecutive transformation of an approximate conformal mapping and an auxiliary orthogonal mapping to have linear and uncoupled equations. Control of cell spacing is based on the concept of reference arc length, and orthogonal correction is peformed in the auxiliary domain. It is concluded that the methodology can successfully generate well controlled orthogonal grids around bodies of 2 and 3 dimensional configurations.

  • PDF

Comparison of Two Reactive Power Definitions in DFIG Wind Power System under Grid Unbalanced Condition

  • Ha, Daesu;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.213-214
    • /
    • 2014
  • This paper compares two instantaneous reactive power definitions in DFIG wind turbine with a back-to-back three-level neutral-point clamped voltage source converter under unbalanced grid conditions. In general, conventional definition of instantaneous reactive power is obtained by taking an imaginary component of complex power. The other definition of instantaneous reactive power can be developed based on a set of voltages lagging the grid input voltages by 90 degree. A complex quantity referred as a quadrature complex power is defined. Proposed definition of instantaneous reactive power is derived by taking a real component of quadrature complex power. The characteristics of two instantaneous reactive power definitions are compared using the ripple-free stator active power control algorithm in DFIG. Instantaneous reactive power definition based on quadrature complex power has a simpler current reference calculation control block. Ripple of instantaneous active and reactive power has the same magnitude unlike in conventional definition under grid unbalance. Comparison results of two instantaneous reactive power definitions are verified through simulation.

  • PDF

A Novel Parameter-independent Fictive-axis Approach for the Voltage Oriented Control of Single-phase Inverters

  • Ramirez, Fernando Arturo;Arjona, Marco A.;Hernandez, Concepcion
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.533-541
    • /
    • 2017
  • This paper presents a novel Parameter-Independent Fictive-Axis (PIFA) approach for the Voltage-Oriented Control (VOC) algorithm used in grid-tied single-phase inverters. VOC is based on the transformation of the single-phase grid current into the synchronous reference frame. As a result, an orthogonal current signal is needed. Traditionally, this signal has been obtained from fixed time delays, digital filters or a Hilbert transformation. Nevertheless, these solutions present stability and transient drawbacks. Recently, the Fictive Axis Emulation (FAE) VOC has emerged as an alternative for the generation of the quadrature current signal. FAE requires detailed information of the grid current filter along with its transfer function for signal creation. When the transfer function is not accurate, the direct and quadrature current components present steady-state oscillations as the fictive two-phase system becomes unbalanced. Moreover, the digital implementation of the transfer function imposes an additional computing burden on the VOC. The PIFA VOC presented in this paper, takes advantage of the reference current to create the required orthogonal current, which effectively eliminates the need for the filter transfer function. Moreover, the fictive signal amplitude and phase do not change with a frequency drift, which results in an increased reliability. This yields a fast, linear and stable system that can be installed without fine tuning. To demonstrate the good performance of the PIFA VOC, simulation and experimental results are presented.

계통 연계형 단상 인버터의 단독 운전 모드를 위한 정지좌표계 전압 제어기 (Stationary Reference Frame Voltage Controller for Single Phase Grid Connected Inverter for Stand Alone Mode)

  • 홍창표;김학원;조관열;임병국
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.517-525
    • /
    • 2015
  • A grid connected inverter must be operated as the main electricity source under an isolated condition caused by the grid problem. Conventionally, the dual loop controller is used for the grid inverter, and the controller is used for control under the stand-alone mode. Generally, the PI(Proportional - Integral) controller is highly efficient under a synchronous reference frame, and stable control can be available. However, in this synchronous frame-based control, high-quality DSP is required because many sinusoidal calculations are necessary. When the PI control is conducted under a stationary frame, the controller constructions are made simple so that they work even with a low-price micro controller. However, given the characteristics of the PI controller, it should be designed with the phase of reference voltage considered. Otherwise, the phase delay of the output voltage can occur. Although the current controller also has a higher bandwidth than the voltage controller, distortion of the voltage is difficult to avoid only by the rapid response of the PI controller, as a sudden load change can occur in the nonlinear load. In this study, a new control method that solves the voltage controller bandwidth problem and rapidly copes with it even in the nonlinear load situation is proposed. The validity of the proposed method is proved by simulation and experimental results.

Experimental Study on Frequency Support of Variable Speed Wind Turbine Based on Electromagnetic Coupler

  • You, Rui;Chai, Jianyun;Sun, Xudong;Bi, Daqiang;Wu, Xinzhen
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.195-203
    • /
    • 2018
  • In the variable speed Wind Turbine based on ElectroMagnetic Coupler (WT-EMC), a synchronous generator is coupled directly to the grid. Therefore, like conventional power plants, WT-EMC is able to inherently support grid frequency. However, due to the reduced inertia of the synchronous generator, WT-EMC is expected to be controlled to increase its output power in response to a grid frequency drop to support grid frequency. Similar to the grid frequency support control of Type 3 or Type 4 wind turbine, inertial control and droop control can be used to calculate the WT-EMC additional output power reference according to the synchronous generator speed. In this paper, an experimental platform is built to study the grid frequency support from WT-EMC with inertial control and droop control. Two synchronous generators, driven by two induction motors controlled by two converters, are used to emulate the synchronous generators in conventional power plants and in WT-EMCs respectively. The effectiveness of the grid frequency support from WT-EMC with inertial control and droop control responding to a grid frequency drop is validated by experimental results. The selection of the grid frequency support controller and its gain for WT-EMC is analyzed briefly.