• Title/Summary/Keyword: Reduction process

Search Result 6,043, Processing Time 0.046 seconds

Investigation of Catalytic Deactivation by Small Content Oxygen Contained in Regeneration Gas Influenced on DSRP (직접 황 회수 공정으로 유입되는 재생가스에 함유된 미량산소의 촉매활성저하 원인 규명)

  • Choi, Hee-Young;Park, No-Kuk;Lee, Tae Jin
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • In order to regenerate the sulfidated desulfurization sorbent, oxygen is used as the oxidant agent on the regeneration process. The small amount of oxygen un-reacted in regeneration process is flowed into direct sulfur recovery process. However, the reactivity for $SO_2$ reduction can be deteriorated with the un-reacted oxygen by various reasons. In this study, the deactivation effects of un-reacted oxygen contained in the off-gas of regeneration process flowed into direct sulfur recovery process of hot gas desulfurization system were investigated. Sn-Zr based catalysts were used as the catalyst for $SO_2$ reduction. The contents of $SO_2$ and $O_2$ contained in the regenerator off-gas used as the reactants were fixed to 5.0 vol% and 4.0 vol%, respectively. The catalytic activity tests with a Sn-Zr based catalyst were for $SO_2$ reduction performed at $300-450^{\circ}C$ and 1-20 atm. The un-reacted oxygen oxidized the elemental sulfur produced by $SO_2$ catalytic reduction and the conversion of $SO_2$ was reduced due to the production of $SO_2$. However, the temperature for the oxidation of elemental sulfur increased with increasing pressure in the catalytic reactor. Therefore, it was concluded that the decrease of reactivity at high pressure is occurred by catalytic deactivation, which is the re-oxidation of lattice oxygen vacancy in Sn-Zr based catalyst with the un-reacted oxygen on the catalysis by redox mechanism. Meanwhile the un-reacted oxygen oxidized CO supplied as the reducing agent and the temperature in the catalyst packed bed also increased due to the combustion of CO. It was concluded that the rapidly increasing temperature in the packed bed can induce the catalytic deactivation such as the sintering of active components.

The effect of cold rolling reduction ratio on the texture evolution in Al-5% Mg alloy (Al-5%Mg 합금 판재의 집합조직 발달에 미치는 냉간 압하율의 영향)

  • Choi, J.K.;Kim, H.W.;Kang, S.B.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.102-105
    • /
    • 2008
  • To investigate the evolution of deformation texture during cold rolling deformation, cold rolling process on a commercial Al-5% Mg sheet was carried out at different rolling reduction ratio. The evolution of annealing texture in cold-rolled Al-5% Mg sheet was also investigated. The evolution of recrystallization texture during annealing process strongly depends on the rolling reduction ratio before heat treatment. Visco-plastic self-consistent (VPSC) polycrystal model was used to predict r-value anisotropy of the cold-rolled and annealed Al-5% Mg sheets. The change of volume fraction for the major texture components was also analyzed.

  • PDF

System model reduction by weighted component cost analysis

  • Kim, Jae-Hoon;Skelton, Robert-E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.524-529
    • /
    • 1993
  • Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called "component cost" to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. One possible use of component costs is for model reduction by deleting those components that have the smallest component cost. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. When the dynamics of this input are added to the plant, which is to be reduced by CCA, the algorithm for model reduction process will be called Weighted Component Cost Analysis (WCCA). Closed-form analytical expressions of component costs for continuous time case, are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems beyond Lyapunov solvable dimension. A numerical example for NASA's MINIMAST system is presented.presented.

  • PDF

Optimal Selection of Master States for Order Reduction (동적시스템의 차수 줄임을 위한 주상태의 최적선택)

  • 오동호;박영진
    • Journal of KSNVE
    • /
    • v.4 no.1
    • /
    • pp.71-82
    • /
    • 1994
  • We propose a systematic method to select the master states, which are retained in the reduced model after the order reduction process. The proposed method is based on the fact that the range space of right eigenvector matrix is spanned by orthogonal base vectors, and tries to keep the orthogonality of the submatrix of the base vector matrix as much as possible during the reduction process. To quentify the skewness of that submatrix, we define "Absolute Singularity Factor(ASF)" based on its singular values. While the degree of observability is concerned with estimation error of state vector and up to n'th order derivatives, ASF is related only to the minimum state estimation error. We can use ASF to evaluate the estimation performance of specific partial measurements compared with the best case in which all the state variables are identified based on the full measurements. A heuristic procedure to find suboptimal master states with reduced computational burden is also proposed. proposed.

  • PDF

Synthesis of Ultrafine Titanium Carbide Powder by Novel Thermo-Reduction Process (신 열환원 공정에 의한 초미립 티타늄 카바이드 분말 합성)

  • ;S.V. Alexandrovskii
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.390-394
    • /
    • 2003
  • Ultra fine titanium carbide particles were synthesized by novel metallic thermo-reduction process. The vaporized TiC1$_4$+$CCl_4$ gases were reacted with liquid magnesium and the fine titanium carbide particles were then produced by combining the released titanium and carbon atoms. The vacuum treatment was followed to remove the residual phases of MgC1$_2$ and excess Mg. The stoichiometry, microstructure, fixed and carbon contents and lattice parameter were investigated in titanium carbide powders produced in various reaction parameters.

A Study on NOx Reduction for a Small Marine Diesel Engine (소형 선박 디젤엔진의 질소산화물 저감에 관한 연구)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.79-84
    • /
    • 2011
  • Air pollutants from a small marine diesel engine are increasing and the IMO(International Marine Organization) regulation asked for its reduction. In this study, NOx reduction technologies such as improvement of various cooling systems are applied to the small marine diesel engine. The various cooling systems are a intercooler, a heat exchanger for engine coolant, and an exhaust manifold by water cooling. These systems are tested on an engine dynamometer and a exhaust gas analyzer by a marine diesel engine test regulation. Test results are shows that the small marine engine are satisfied the IMO NOx regulations; Tire II.

The study of GaN-based semiconductors with low-defect density by microstructural characterization (미세구조 분석을 이용한 저밀도 결함을 가진 GaN계 반도체 연구)

  • Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.424-427
    • /
    • 2003
  • We have investigated the microstructural analysis of epitaxial lateral overgrowth (ELO), pendeoepitaxy (PE), and superlattice structures used as technology for the reduction of structural defects like dislocation in nitride semiconductors using transmission electron microscopy. We confirmed that the regrowth process such as ELO and PE is very effective technique on the reduction of threading dislocation (less than $10^6/cm^2$) in the specific area. However, to decrease the defect density in the whole nitride films and the suppress the generation of defect by regrowth, we should find the optimized conditions. Besides, the process using double PE and AlGaN/GaN superlattice structure showed no effect on the defect reduction up to now.

  • PDF

The Trend of Materials Technology in New Generation Vehicles (차세대 자동차 개발과 재료기술)

  • 임종대
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.04b
    • /
    • pp.7-7
    • /
    • 2002
  • Recently social demand to achieve low fuel consumption and clean emission requires the development of new generation vehicle beyond the conventional vehicle concept. In this point, new generation vehicle is newly designed as electric vehicle, hybrid electric vehicle, fuel cell electric vehicle or 3 liter car etc. In order to develop new generation vehicle, it is very important to develop new materials and process technologies now. In this paper these new technologies are presented focusing on weight reduction specially. Steel body can be achieved 20-25% weight reduction by adoption of high strength steel and new process technologies, i.e tailored blank and hydroforming. Aluminium body can be achieved 40-50% weigt down by use of all aluminium monocoque body or aluminium space frame with aluminium panel. Plasitic composite body can be achieved 30% weight reduction comparing with conventional steel body.

  • PDF

A Experimental Study on the Ultrasonic Influence for Melting the Paraffin the Ice (초음파가 얼음과 파라핀 용해에 미치는 영향에 관한 실험적 연구)

  • 이재효;김태훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1106-1113
    • /
    • 2001
  • This paper presents experimental works on the ultrasonic influence during melting of ice and paraffin and compared the paraffin's result with ice's results. The experiments was carried out under two setting conditions.: 1) Heater without ultrasonic vibration, 2) heater with ultrasonic vibration. Experimental observations show that the ultrasonic vibration enhances significantly the phase-change process (melting) so that the melting time is reduced about 16∼25% compared to those of molting process without ultrasonics in the melting of both ice and paraffin. But the influence of ultrasonics was not significant to affect the reduction of the power consumption. In the case of paraffin, the reduction rate of power consumption was about 20%, but the reduction of the power consumption was increased about 0∼12%.

  • PDF

Facile Preparation of Silver Nanoparticles and Application to Silver Coating Using Latent Reductant from a Silver Carbamate Complex

  • Kim, Kyung-A;Cha, Jae-Ryung;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.505-509
    • /
    • 2013
  • A low temperature ($65^{\circ}C$) thermal deposition process was developed for depositing a silver coating on thermally sensitive polymeric substrates. This low temperature deposition was achieved by chemical reduction of a silver alkylcarbamate complex with latent reducing agent. The effects of acetol as a latent reducing agent for the silver 2-ethylhexylcarbamate (Ag-EHCB) complex and their blend solutions were investigated in terms of reducing mechanism, and the size and shape of silver nanoparticles (Ag-NPs) as a function of reduced temperature and time, and PVP stabilizer concentration were determined. Low temperature deposition was achieved by combining chemical reduction with thermal heating at $65^{\circ}C$. A range of polymer film, sheet and molding product was coated with silver at thicknesses of 100 nm. The effect of process parameters and heat treatment on the properties of silver coatings was investigated.