• 제목/요약/키워드: Reduction of cogging torque

검색결과 88건 처리시간 0.025초

Cogging Torque Reduction in Line Start Permanent Magnet Synchronous Motor

  • Behbahanifard, Hamidreza;Sadoughi, Alireza
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.878-888
    • /
    • 2016
  • Cogging torque has a negative impact on the operation of permanent magnet machines by increasing torque ripple, speed ripple, acoustic noise and vibration. In this paper Magnet Shifting Method has been used as a tool to reduce the cogging torque in inset Line Start Permanent Magnet Synchronous Motor (LSPMSM). It has been shown that Magnet Shifting Method can effectively eliminate several lower-order harmonics of cogging torque. In order to implement the method, first the expression of cogging torque is studied based on the Fourier analysis. An analytical expression is then introduced based on Permanent Magnet Shifting to reduce cogging torque of LSPMS motors. The method is applied to some existing machine designs and their performances are obtained using Finite Element Analysis (FEA). The effect of magnet shifting on pole mmf (magneto motive force) distribution in air gap is discussed. The side effects of magnet shifting on back-EMF, core losses and torque profile distortion are taken into account in this investigation. Finally the experimental results on two prototypes 24 slot 4 pole inset LSPMS motors have been used to validate the theoretical analysis.

900kW급 영구자석형 동기발전기 3차원 설계 및 코깅 토크 분석 (3D Design and Analysis of Cogging Torque in 900kW Permanent Magnet Synchronous Generator)

  • 이상우;김태훈;김동언;정진화;박현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.443-443
    • /
    • 2009
  • Cogging Torque is induced by the magnetic attraction between the rotor mounted permanent magnet(PM) and the stator teeth. This torque is an unwanted effect causing shaft vibration, noises, metal fatigues and increased stator length. A variety of techniques exist to reduce the cogging torque of PM generator. Even though the cogging torque can be vanished by skewing the stator slots by one slot pitch or rotor magnets, manufacturing cost becomes high due to the complicated structure and increased material costs. This paper introduces a new cogging torque reduction technique for PM generators that adjusts the azimuthal positions of the magnets along the circumference. A 900 kW class PMSG model is simulated using a three dimensional finite element method and the resulting cogging torques is analyzed using the Maxwell tensor stress tensor. Using the 3D simulation, the end contribution of the cogging torque is accurately calculated.

  • PDF

개선된 전압제어를 이용한 BLDC 전동기의 토크맥동저감 (Reduction of Torque Ripple in a BLDC Motor Using an Improved Voltage Control)

  • 송정현;장진석;김병택
    • 제어로봇시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.145-150
    • /
    • 2010
  • This paper deals with reduction of torque ripple in a brushless DC motor with input voltage control. The commutation torque ripple can be controlled with varying input voltage, but cogging torque is independent on it. So, in this paper a strategy for minimizing torque ripple is proposed by offsetting the cogging torque with deliberate voltage control. The optimal condition is determined with variable voltage levels and advance angles. As results, it is shown that the method causes 63% decrease of torque ripple.

IPM type BLDC 전동기의 자속장벽 설치에 따른 코깅 토크 저감 (Reducing the Cogging toque of IPM type BLDC Motor according to the Flux barrier shape)

  • 양병렬;윤근영;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.67-69
    • /
    • 2004
  • This paper describes an approach to design a interior permanent magnet motor(IPM motor) for the reduction of cogging torque. The magnitude of the torque ripple and cogging torque in a interior permanent magnet motor(IPM motor) are generally dependent on several major factors: the shape of stator tooth tip, slot opening width, air gap length, the shape of barrier preventing flux leakage of magnets, magnet configuration and magnetization distribution or magnet poles. In this paper, the IPM BLDC motor is designed considering a saturated leakag flux between the barriers on the rotor for increasing the efficiency and decreasing the magnitude of the cogging torque. Analytical model is developed for the IPM BLDC motor with a concentrated winding stator. The results verifies that the proposed design approach is very efficient and effective in reducing the cogging torque and the torque ripple of the IPM BLDC motor to be used in an electric vehicle.

  • PDF

매입형 영구자석 동기 전동기의 코깅 토크 저감을 위한 보조슬롯 설계 (Notch Design for Cogging Torque Reduction of Interor type Permanent Magnet Synchronous Motor)

  • 한광규;안호진;강규홍;장기봉;김규탁
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.959-965
    • /
    • 2008
  • This paper presents a novel method for cogging torque reduction of interior type permanent magnet motor. For calculation position and width of notch, energy formulation and cogging torque function in air gap are analyzed by analytical method(space harmonics method) and numerical method. The optimal shape of notchs is decided by using finite element method. The validity of the proposed method is confirmed with experiments.

내전형 BLDC 전동기의 코깅 토크 저감을 위한 영구자석의 형상 설계 (Permanent Magnet Design for Reduction of Cogging Torque in Innner Rotor Brushless DC Motor)

  • 김성철;주수원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.864-866
    • /
    • 2000
  • In the slotted motor, cogging torque is generated due to the interaction between the rotor magnets and the slots on the stator. It is well known that cogging torque produces vibration and noise which may be detrimental to the performance of position and speed control system. Hence, the prediction of cogging torque is very important at the design stage of BLDC motor. In this paper, permanent magnets with different arc an91e of inner and outer radius is proposed. The cogging torque of proposed model and conventional one is analyzed by 2-D FEM and compared.

  • PDF

유한요소법과 개선된 ( ${\mu}$ + ${\lambda}$ ) Evolution Strategy를 이용한 PM동기 전동기 Cogging Torque저감을 위한 영구 자석 최적 설계 (Optimal Shape Design of Permanent Magnet for PM Synchronous Motors Cogging Torque Reduction using Improved ( ${\mu}$ + ${\lambda}$ ) Evolution Strategy and FEM)

  • 하경덕;신판석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.21-23
    • /
    • 1997
  • The analysis of the permanent type synchronous motor is performed by using the finite element method (FEM). The optimal design of the permanent magnet is presented for minimizing cogging torque in this paper. The cogging torque is expressed in terms of scalar potential computed by the virtual work formula. The minimization of cogging torque is achieved by using the ( ${\mu}$ + ${\lambda}$ ) Evolution Strategy (ES) and the selected flux densities are used to a constraint.

  • PDF

단상 BLDC 전동기 고정자 노치 위치에 따른 코깅토크 저감에 관한 연구 (A Study of Cogging Torque Reduction depending on Notch Position of Single Phase BLDC Motor Stator)

  • 감승한;정태욱
    • 한국산업융합학회 논문집
    • /
    • 제17권3호
    • /
    • pp.113-121
    • /
    • 2014
  • This paper presents a optimization design of 10[W] single phase BLDC motor applied Notch shape. Cogging Torque causes noise, vibration and torque ripple so notched stator is proposed in this paper. Firstly, a single phase BLDC motor needs applying aymmetric air-gap shape because this type motor cannot help having dead-point which is zero torque position. However, using asymmetric air-gap structure causes cogging torque increase. Therefore, this paper proposes the notch shape structure. Notch shape structure has some advantages; low cost, easy to apply. There are 4 optimal factors selected in optimization process, which are position and size of notches. Through building a prototype, the result of FE analysis and the experimental measurement value are compared each other and then vailidity and utility of simulation will be verified.

브러시레스 D\ulcornerC 모터의 코깅 토오크 저감에 관한 연구 (A Study on the Low Cogging Torque of Brushless DC Motor)

  • 임달호;김생수
    • 대한전기학회논문지
    • /
    • 제37권6호
    • /
    • pp.361-367
    • /
    • 1988
  • In this study new design method with auxiliary slot on salient pole is proposed for the reduction of cogging torque which is the problem of corm type DC Brushless motor. And FEM(Finite element method) is adapted in trial motor which is designed by the method proposed in this paper. and learn the quantative characteristics of cogging torque. Comparing results of analysis with measurement it is porved that the proposed design has a propriety.

  • PDF

영구자석을 사용한 모터의 코깅토크에 관한 이론적 해석 (Analytical Analysis of Cogging Torque in Motors of Permanent MagneticType)

  • 고홍석;김광준
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1795-1800
    • /
    • 2000
  • One of the principal sources of vibration and noise in permanent magnetic machines is cogging torque, which is induced by interaction between the rotor poles and the stator teeth. For its analysis, using finite element analysis is very time consuming and the calculation of performance factors is extremely sensitive to the discretization. Especially, Maxwell stress tensor method is sensitive to the location of integral path. In this paper, a cogging permeance fuction is defined and replaced by the straight line. And it is assumed that the flux density acting on the stator's tooth side is the euqal to the flux density of the slot area. Using this definition and assumption, analytical calculation of cogging torque is presented and validated. And several reduction method is introduced.