• Title/Summary/Keyword: Reduction of cogging torque

Search Result 88, Processing Time 0.028 seconds

Cogging Torque Reduction Method of a Single-Phase BLDC Motor using Asymmetric Sloping Notch (비대칭 Sloping 노치를 적용한 단상 BLDC 전동기의 코깅토크 저감 방법)

  • Park, Young-Un;So, Ji-Young;Woo, Kyung il;Kim, Dae-Kyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1568-1574
    • /
    • 2017
  • This paper studied cogging torque reduction effect for sloping notch applied two notches on stator teeth. We have confirmed accuracy of FEM(Finite Element Method) through comparison previous model using asymmetric notch for experiment and 3D FEM results, and then cogging torque comparison of previous model and sloping notch model. Also the sloping notch model has been modified to step-sloping notch model to consider manufactur. The modification method of sloping notch changed the degree of slope of notch (a)(Notch(a) sloping Deg) and the degree of Slope of notch (b)(Notch(b) Sloping Deg). When Cogging torque is case of minimum, Notch (a) Sloping Deg is $-12[^{\circ}]$ and Notch(b) Sloping Deg $12[^{\circ}]$. In this case, cogging torque was about 23.9[mNm]. Cogging torque of previous model is about 40.8[mNm], so sloping notch model is less than previous model by 41.42[%]. Also, if sloping notch model is changed to step-sloping notch model, cogging torque of step-sloping notch model is about 24.82[mNm], Therefore the difference between the two cogging torque is about 3.85[%], so step-sloping notch model can be applied when considering manufacture.

Influence of Cogging Torque Reduction Method on Torque Ripple in a Surface-Mounted Permanent Magnet Synchronous Motor

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • The torque characteristics of a surface-mounted permanent magnet synchronous motor (SPMSM) are analyzed in this study. The harmonics of the back electromotive force (EMF) and cogging torque are analyzed by the finite element method to study their effects on the torque ripple. Although low cogging torque can be achieved by varying geometric parameters such as the permanent magnet (PM) offset and notch depth on the stator teeth, the torque ripple is increased in some cases. The analysis results show that the ripple of the generated torque is determined by not only the amplitudes but also the phases of harmonics for the back EMF and cogging torque.

Reducing Cogging Torque in Interior Permanent Magnet type BLDC motor by Flux barriers in the rotor (회전자부의 자속장벽 설치를 통한 IPM type BLDC 전동기 코깅 토오크 저감에 대한 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Rhyu, Se-Hyun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.64-66
    • /
    • 2004
  • Several techniques have been adopted in motor design of interior permanent magnet (IPM) type brushless DC (BLDC) motor to minimize cogging torque. IPM type motor has better ability in the centralization of flux than surface-mounted permanent magnet (SPM) type BLDC motor. So, the structure of IPM type BLDC motor has high saliency ratios that produce additional torque. However, this structure has a significant cogging torque that generates both vibration and noise. This paper describes new technique of the flux barriers design for reduction of cogging torque of IPM type BLDC motor. To reduce the cogging torque, flux barriers are applied in the rotor. Changing the number of barrier, the cogging torque is analyzed by finite clement method(FEM).

  • PDF

A Novel Cogging Torque Reduction Method for Single-Phase Brushless DC Motor

  • Park, Young-Un;Cho, Ju-Hee;Rhyu, Se-Hyun;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • Single-phase, brushless DC (BLDC) motors have unequal air-gaps to eliminate the dead-point where the developed torque is zero. Unfortunately, these unequal air-gaps can deteriorate the motor characteristics in the cogging torque. This paper proposes a novel design for a single-phase BLDC motor with an asymmetric notch to solve this problem. In the design method, the asymmetric notches were placed on the stator pole face, which affects the change in permanent magnet shape or the residual flux density of the permanent magnet. Parametric analysis was performed to determine the optimal size and position of the asymmetric notch to reduce the cogging torque. Finite element analysis (FEA) was used to calculate the cogging torque. A more than 28% lower cogging torque compared to the initial model with no notch was achieved.

FEA-based Torque Ripple and Noise Reduction of DC Motor for Automotive Air-Conditioning (유한요소 해석 기반 자동차 공조용 DC모터 토크 리플과 소음 저감에 관한 연구)

  • Hwang, Myeonghwan;Kim, Donghyeon;Yang, Seungjin;Cha, Hyunrok;Han, Jongho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1895-1898
    • /
    • 2017
  • This paper discusses methods for the torque ripple and noise reduction of DC motors for automotive air-conditioning based on electromagnetic field analysis. The target of the motor is a blower motor, and to reduce cogging torque and the torque ripple, the optimum model was selected by deforming the brush or commutator shape. In addition, to reduce the cogging torque, the model design was carried out by applying the skew method and the magnetization method of a magnet to the rotor. For optimization, the shape, material, and drive system of the motor were selected using an electromagnetic field as the analysis tool, and the method of reducing the cogging torque was applied to 4-pole, 12- and 13-slot motors considering the mechanical part. Lastly, this paper confirmed thatthemethod, which proposed how much noise, cogging torque, and vibration are reduced, improves through practical analysis.

Reduction of Cogging Torque in BLDC Motors (BLDC 전동기의 코깅 토오크 저감설계)

  • Kim, Suk-Ki;Chung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.83-85
    • /
    • 1995
  • In a permanent magnet motor, cogging torque arises from the intersection of the rotor magnets with the steel teeth on the stator. This paper describes design measures which can be taken to reduce the cogging torque. In this paper for the optimal shape design of brushless DC motor, evolution strategy is investigated to find the dimension of stator of BLDC motor that minimizes the cogging torque. The corresponding field analysis is performed by two-dimensional finite element method.

  • PDF

Study on the Noise Reduction of BLDC Fan Motor by Cogging Torque Reduction (코깅토크 저감에 의한 BLDC Fan & Motor의 공진 소음 개선에 관한 연구)

  • Shin, Hyoun-Jeong;Lee, En-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1217-1222
    • /
    • 2013
  • It is very important to diminish noise source of electric motor systems that are used for home appliance area. We have studied on the noise reduction of BLDC motor, mainly focusing on reducing noise source from cogging torque. This noise source causes resonance of fan & motor systems. This study showed that the higher harmonic component of the cogging torque was the main factor for noise generation. Therefor, to reduce noise of bldc motor for refrigerator, this study suggested peanut shaped magnet which surface flux has similar sinusoidal wave form.

Reduction of cogging torque of Servo motor with Rare earth Permanent Magnets & Its application (희토류 영구자석 서보모터의 코깅토오크 저감방법 및 시제품에의 적용)

  • Han, Moon-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.128-130
    • /
    • 1998
  • In a recent as the compact and the precision motor is needed, the use of rare earth permanent magnet with high energy product is frequent. Accordingly it is important to reduce the cogging torque for improving the control precision of motor. In order to develop the motor with low cogging torque which is contented with the requirement of customer, the prototype is designed and complete based on analysis method to reduce the cogging torque. The experimental results verify the validity.

  • PDF

Effect of Slot Opening on the Cogging Torque of Fractional-Slot Concentrated Winding Permanent Magnet Brushless DC Motor

  • Yan, Jianhu;Zhang, Qiongfang;Feng, Yi
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.78-82
    • /
    • 2016
  • Cogging torque will affect the performance of a permanent magnet Brushless DC Motor (BLDCM), thus the reduction of cogging torque is key for BLDCM optimization. In this paper, the phase shifting of cogging torque for a fractional-slot concentrated winding BLDCM is analyzed using the Maxwell tensor method. Moreover, a 9-slot 10-pole concentrated winding BLDCM driven by ideal square waveform is studied with the finite element method (FEM). An effective method to reduce the cogging torque is obtained by adjusting the slot opening. In addition, the influences of different slot openings on back electromotive force (back-EMF), air gap flux density and flux linkage are investigated and experimentally validated using the prototype BLDCM.

Analytical Approach and Experimental Verification for the Cogging Torque Reduction of Permanent Magnet Machines with Multi-pole Rotor (다극 회전자를 갖는 영구자석 기기의 코깅토크 저감을 위한 해석적 접근 및 실험적 검증)

  • Jang, Seok-Myeong;Choi, Jang-Young;Ko, Kyoung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1031-1032
    • /
    • 2007
  • In order to reduce the cogging torque, by predicting the variation of the cogging torque according to pole arc/pitch ratio by analytical and FE methods, pole arc/pitch ratio which makes the cogging torque minimum are determined. And then, the measurements of cogging torque for permanent magnet generators with determined pole arc/pitch ratio are presented. The reasons for the error between predicted and measured value are discussed fully in terms of the shape of permanent magnet. Finally, by confirming that predicted results for cogging torque according to pole arc/pitch ratio and skew are shown in good agreement with those obtained from measured one, the validation of analysis results is confirmed.

  • PDF