• 제목/요약/키워드: Reduction Gears

검색결과 94건 처리시간 0.024초

스피로이드 베벨 기어 감속기의 설계 자동화 및 가공 기술에 관한 연구 (A Study on the Design Automation and Machining Technology of Spiroid Bevel Reduction Gear)

  • 이춘만;류미라
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.141-146
    • /
    • 2002
  • In this paper, we developed an automated program for the design and machining of spiroid bevel gear, A computer program employing the theory of gearing between gear and pinion is developed to design spiroid bevel gear mechanism. A new method fur machining spiroid bevel gears is proposed, and effectviely used for two examples.

침탄치차의 쇼트피닝처리가 크랙진전억제에 미치는 영향 (Effects of Shot Peening on Crack Growth Resistance in Carburized Gears)

  • 류성기;정인성
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3227-3235
    • /
    • 1994
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a carburized gear tooth and its application to the fatigue crack propagation problem. A practical method is proposed on the basis of the assumption that the residual stress is caused by the difference of volume expansion in the case and the core, and the influence of both the reduction of retained austenite and the strain due to shot peening are considered. The evaluated residual stress is close to the measured stress, though the surface stress is rather overestimated. The stress intensity factor is computed by the influence function method, and it is shown that the factor is decreased by the residual stress in shot peened gear tooth. The shot peening is fairly effective to the reduction of fatigue crack growth rate. The crack propagation is simulated and the resistance due to shot peening is quantitatively demonstrated and discussed.

탄성커플링을 갖는 기관축계의 비틀림진동 특성 및 제어 (A Study on the Characteristics and Control of Torsional Vibration for Engine Shafting Systems with Elastic Coupling)

  • 박용남;이진모;김태언;김의간
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.70-75
    • /
    • 1997
  • Power driving shaft systems with reduction gear are frequently equipped with elastic couplings to protect reduction gears and to relieve the torsional vibration problems. In this study, torsional vibration characteristics for the engine shafting system with elastic couplings are investigated and the calculating program is developed. It is confirmed that torsional vibration can be controled by careful selection of a elastic coupling with suitable characteristics and the suitability of a elastic coupling can only be determined as a result of a complete torsional vibration analysis including engine conditions such as misfring for shafting system.

  • PDF

사이클로이드 감속기의 성능평가에 관한 연구 (A Study on the Performance Evaluation of Cycloid Reducer)

  • 박진석;김기훈;김래성;진진;류성기
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.113-118
    • /
    • 2017
  • In this paper, a study on the performance evaluation of a cycloid reducer for remote weapons systems is presented. Reduction gears applied to remote weapons vehicles need to be compact and capable of large torque transmissions as well as require structural optimization, high load capacity, and high precision position control. To meet these requirements, a cycloid reducer with low backlash, high precision, high overload capability, high rigidity, and high efficiency is required. Thus, a cycloid reducer with a reduction ratio of 127:1, backlash of 1 arcmin (1/60 deg) or less, and reduction gear efficiency of 70% or more, which are the design requirements for a remote weapons system, was designed utilizing a design and analysis program (HEXAGON) for gear engineering. To confirm the performance of the cycloid reducer, the hardness of the main components of the manufactured cycloid reducer, reduction ratio, and efficiency were measured.

고감속비를 가지는 베어링일체형 구조의 2단 전위 감속기의 개발 (Development of Dual Stage Profile Shifted Gear System with Bearing-Integrated Structure for High Reduction Ratio)

  • 황일규;최정수;정문수
    • 한국CDE학회논문집
    • /
    • 제17권5호
    • /
    • pp.312-323
    • /
    • 2012
  • Planetary gearing is a gear system consisting of one or more planet gears, revolving about a sun gear. While the planetary gear system has many advantages- for example, high power density, large reduction in a small volume, multiple kinematic combinations, pure torsional reactions, and coaxial shafting, it has not been widely used because of its high bearing loads, inaccessibility, and design complexity. It is also necessary to shift several pairs of gear profiles at a same time. Therefore, designing profile shifted planetary gear system is a difficult and know-how dependent job. This study provides a practical solution to design a profile shifted gear system by the procedural design scheme, and proposes a bearing integrated structure of the dual stage profile shifted gear system with a robust output end. A dual stage profile shifted gear system with the bearing integrated structure is manufactured by the proposed design scheme in this study. This gear system is verified that it is good enough to commercialize, because it has high performance with high gear ratio and robust output end against axial and radial directional runouts in a small space.

장구형 웜기어를 이용한 감속기 설계 (Design of a Reduction Gear using Double-Enveloping Worm Gear)

  • 김태우;황영국;이춘만
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.785-789
    • /
    • 2013
  • Worm gear sets may be either single- or double-enveloping. In a single-enveloping set, the worm wheel is cut into a concave surface, thus partially enclosing the worm when meshed. The double-enveloping worm gear is similar to the single-enveloping gear; however, the worm envelopes the worm gear. Thus both are throated. The double-enveloping worm gear has more of the tooth surface in contact than the single-enveloping worm gear. The larger contact area increases the load-carrying capacity. For this reason, double-enveloping worm gearing is widely applied in heavy-duty machinery, for applications including construction and metallurgy. In this paper, we designed a compact reduction gear that is highly efficient using double-enveloping worm gears. We calculated the bearing load in the worm gearing to select the bearing and the housing surface area according to the recommended values from AGMA(American Gear Manufacturers Association). The finite element method was used to assess the structural integrity.

고속철도차량 1차 구동장치에 대한 완전분해정비의 최적 주기 평가 (Evaluation of Optimal Time Between Overhaul Period of the First Driving Devices for High-Speed Railway Vehicle)

  • 정진태;김철수
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8700-8706
    • /
    • 2015
  • 고속철도차량 동력대차의 1차 구동장치는 모터 감속기와 견인전동기로 구성한다. 모터 감속기와 견인전동기는 기계적으로 일체형 결합 구조이지만, 상이한 기술 요구사항으로 인하여 이들의 완전 분해정비 주기는 서로 다르다(모터 감속기의 완전 분해정비 주기: $1.8{\times}10^6km$, 견인전동기의 완전 분해정비 주기: $2.5{\times}10^6km$). 따라서 불필요한 정비 횟수를 감소하기 위하여 신뢰성 중심 유지보수 관점에서 최적의 완전 분해정비 주기의 산정이 중요하다. 본 연구에서는 실제 유지보수 정비이력으로부터 두 구성품들에 대한 고장 결함나무 분석을 수행하고 각 하부부품들의 치명도를 고려한 고장률을 각각 평가하였다. 두 구성품에 대한 최적의 동일한 완전분해 정비주기는 기존의 총 예방정비 비용을 감소하기 위하여 유전자 알고리즘으로 부터 얻었다. 이 알고리즘에서 각 개체를 구성하는 유전자는 최소 예방 정비주기이며, 이의 조합으로 구성된 세대별 개체의 적합도함수는 총 정비비용의 역수로 공식화하여 얻는다. 최소공배수에 의한 방법은 기존 대비 4%만 감소하지만, 유전자 알고리즘에 의한 최적의 동일 완전분해 정비주기는 225만km로서 기존 방법의 총비용과 비교하여 약 14% 감소하였다.

3차원 입체 영상 진단용 초음파 프로브의 설계 및 제작 (Design and Fabrication of a 3-dimensional Diagnostic Ultrasonic Probe)

  • 은홍;이수성;노용래
    • 한국음향학회지
    • /
    • 제21권8호
    • /
    • pp.766-771
    • /
    • 2002
  • 본 연구에서는 128개의 능동소자로 구성된 컨벡스 (convex)형 초음파 탐촉자를 이용한 3차원 초음파 영상 진단용 초음파 섹터 프로브를 개발하였다 탐촉자는 중심주파수 4.5 ㎒, 대역폭 66%로 제작되었으며, 구동부는 감속 기어를 장착한 스텝모터와 이에 연결된 평기어를 이용해 탐촉자의 축을 회전시킴으로써 3차원 영상구현을 위한 연속적인 2차원 영상을 획득할 수 있게 고안하였다. 음향커버는 고분자 재료를 사용하여 탐촉자의 회전반경과 동일하게 설계 및 제작하였다. 제작된 섹터 프로브의 각도 제어성 및 구조적 안정성을 실험적 3차원 영상 획득을 통해 확인하였다.

소형 전기자동차용 감속기 설계 (Design of a Reducer Gear for Small Electric Vehicles)

  • 이재구;김성훈;한성길;신유인;송철기
    • 한국기계가공학회지
    • /
    • 제19권9호
    • /
    • pp.116-121
    • /
    • 2020
  • In recent times, fuel economy enhancement and environmental regulation compliance have become the main topics of interest in the automobile industry. Electric vehicles are desirable alternatives to the existing cars that employ internal combustion engines. Specifically, electric vehicles are equipped with inverters, motors, and a gearbox instead of engines and transmission mechanisms. The gearbox is a key component, used to transmit power from the electric motor to the wheel. Therefore, the design of the gearbox is critical. However, most engineers design gears based only on their experience because no standards pertaining to the design factor exist, other than those for the gear ratios. To overcome this problem, the structural stabilities must be examined considering the design factors of the gears. In this study, we considered the module and number of teeth as the main factors. The constraints corresponded to the final gear ratio and fixed distance between each axle of the shafts. Moreover, a structural analysis was conducted, and the variation trend of the maximum equivalent stress against changes in the gear module and number of teeth was examined. By performing such an analysis, the structural stability in the design of a gear system could be effectively investigated.

Mathematical Model and Design Optimization of Reduction Gear for Electric Agricultural Vehicle

  • Pratama, Pandu Sandi;Byun, Jae-Young;Lee, Eun-Suk;Keefe, Dimas Harris Sean;Yang, Ji-Ung;Chung, Song-Won;Choi, Won-Sik
    • 한국산업융합학회 논문집
    • /
    • 제22권1호
    • /
    • pp.1-9
    • /
    • 2019
  • In electric agricultural machine the gearbox is used to increase torque and lower the output speed of the motor shaft. The gearbox consists of several shafts, helical gears and spur gears works in series. Optimization plays an important role in gear design as reducing the weight or volume of a gear set will increase its service life and improve the bearing capacity. In this paper the basic design parameters for gear like shaft diameter and face width are considered as the input variables. The bending stress and material volume is considered as the objective function. ANSYS was used to investigate the bending stress when the variable was changed. Artificial Neural Network (ANN) was used to obtain the mathematical model of the system based on the bending stress behaviour. The ANN was used since the output system is nonlinear. The Genetic Algorithm (GA) technique of optimization is used to obtain the optimized values of shaft diameter and face width on the pinion based on the ANN mathematical model and the results are compared as that obtained using the traditional method. The ANN and GA were performed using MATLAB. The simulation results were shown that the proposed algorithm was successfully calculated the value of shaft diameter and face width to obtain the minimal bending stress and material volume of the gearbox.