• Title/Summary/Keyword: Reduced peak height)

Search Result 43, Processing Time 0.024 seconds

Reproducible Resistance Switching and Physical Characteristics of TiOx films with Oxidation Temperature and Time

  • Kim, Jong-Gi;Na, Hee-Do;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.171-171
    • /
    • 2010
  • In this work, we investigated the effect of the oxidation temperature on the unipolar and bipolar resistance switching behaviors of the oxidized TiO-x films. TiOx films on Pt electrodes were fabricated by the oxidation of Ti films at $550^{\circ}C$ for 1 to 3 hours. The unipolar and bipolar resistance switching properties were investigated with the oxidation temperature and time. Also, the crystal structure and the physical properties such as chemical bonding states of TiOx layers were characterized in addition to the resistance switching characteristics. The resistance switching behaviors of TiOx films oxidized at above $450^{\circ}C$ and below $650^{\circ}C$ was shown. So, we investigated that the resistance switching behaviors of TiOx films oxidized at $550^{\circ}C$ with the oxidation time from 1 to 3 hour. The memory windows of unipolar switching in the oxidized TiOx films were reduced with increasing the oxidation time, but those of the bipolar switching were slightly enlarged. The enlargement of rutile TiO2 peak with increasing the oxidation time and temperature was studied by X-ray diffraction. An increase of non-lattice oxygen and Ti3+ in the TiOx films with the oxidation times was investigated by X-ray photoemission spectroscopy. It was expected that the uipolar and bipolar resistive switching of the oxidized TiOx film was strongly related with the migration of non-lattice oxygen anions and schottky barrier height, respectively.

  • PDF

Interannual Variability of the Water Masses Observed in the Tropical Northwestern Pacific (북서태평양 열대해역에서 관측된 수괴의 경년변동성)

  • Choi, Eunji;Jeon, Dongchull
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.161-169
    • /
    • 2016
  • The interannual variability of the water masses was analyzed from the CTD data measured in the tropical northwestern Pacific from 2006 to 2014. There are two typical water masses NPTW and NPIW that reveal the interannual variability in the survey area, in addition to two other water masses; the surface water mass TSW with a large seasonal variability and the deep water mass AACDW with a constant temperature-salinity characteristic at the depths deeper than 2,000 meters. In 2012 and 2014 NPTW was the most widely extended horizontally and thicker than 100 meters vertically, which was found over the entire survey area. However, NPTW was reduced and became much narrower in 2009 than in the other years. NPIW seemed to expand southwards from the north of $21^{\circ}N$ to $15^{\circ}N$ in 2008 and in 2012, which showed the salinity minimum in 2013 (< 34.15 psu). The sea surface height estimated by Absolute Dynamic Topography (ADT) approximately along $135^{\circ}E$ section showed the high peaks (> $1.45dyn{\cdot}m$) between $16^{\circ}N$ and $18^{\circ}N$ during the periods between 2007 and 2009 and between 2012 and 2013; the former peak lasted wider and longer in latitude and time (about three times) than the latter. The vertical section of the geostrophic currents in the upper 1,000 meters shows that there was a mesoscale pattern of repeated eastward and westward flows a few times in some years (2010 and 2014), which seemed to disappear in some other years (2008 and 2012); the former was closely related to the mesoscale eddies and the latter implied the pattern with the permanent currents. The persistent eastward flow between $17^{\circ}N$ and $19^{\circ}N$ seems to be related to the Subtropical Countercurrent (STCC).

Roughness and micro pit defects on surface of SUS 430 stainless steel strip in cold rolling process

  • Li, Changsheng;Zhu, Tao;Fu, Bo;Li, Youyuan
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.215-226
    • /
    • 2015
  • Experiment on roughness and micro pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The relation between roughness and glossiness with reduction in height, roll surface roughness, emulsion parameters was analyzed. The surface morphology of micro pit defects was observed by SEM, and the effects of micro pit defects on rolling reduction, roll surface roughness, emulsion parameters, lubrication oil in deformation zone and work roll diameter were discussed. With the increasing of reduction ratio strip surface roughness Ra(s), Rp(s) and Rv(s) were decreasing along rolling and width direction, the drop value in rolling direction was faster than that in width direction. The roughness and glossiness were obtained under emulsion concentration 3% and 6%, temperature $55^{\circ}C$ and $63^{\circ}C$, roll surface roughness $Ra(r)=0.5{\mu}m$, $Ra(r)=0.7{\mu}m$ and $Ra(r)=1.0{\mu}m$. The glossiness was declined rapidly when the micro defects ratio was above 23%. With the pass number increasing, the micro pit defects were reduced, uneven peak was decreased and gently along rolling direction. The micro pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. When work roll diameter was small, bite angle was increasing, lubrication oil in micro pit of deformation zone was decreased, micro defects were decreased, and glossiness value on the surface of strip was increased.

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Evaluation of the Effect of Traffic Control Program on the Ambient Air Quality in Seoul Metropolitan Area Using the Lower Level Stability Index of Atmosphere (하층대기의 연직 안정도 지표를 이용한 차량 2부제의 수도권 대기오염도 저감효과 분석)

  • Kim C.-H.;Park 1.-S.;Lee S.-J.;Kim J.-S.;Hong Y.-D.;Han J.-S.;Jin H.-A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.243-257
    • /
    • 2005
  • The effects of Traffic Control Program (TCP) on the ambient urban air quality of SO$_{2}$, NO$_{2}$, O$_{3}$, and PM$_{10}$ were evaluated in Seoul metropolitan area by using the lower atmospheric vertical stability index and daily mean wind speeds. The vertical stability index; temperature lapse rate between 1000 hPa and 850 hPa geopotential height fields, were used to identify daily vertical stability index during the 2002 World Cup period where traffic amount was reportedly reduced to half the number of vehicles. The indicated air quality levels of TCP days were then compared with those of the cases observed with analogous vertical stability during the recent 3 years from 2000 to 2002. The result indicates that the effect of TCP on the primary air pollutants are found to be approximately 39$\%$, 23$\%$ and 20$\%$ lower for SO$_{2}$, NO$_{2}$ and PM$_{10}$, respectively. The secondary air pollutant; ozone, showed relatively smaller decreasing rate (13$\%$) of daily mean concentrations (even increased during the night time). The comparison of daily maximum or peak concentrations reveals that the pronounced decreasing effects of TCP on the ambient air quality for both primary and secondary air pollutants, suggesting that TCP is one of the effective strategies to control peak or higher concentrations for most urban scale air pollutants in and around the Seoul metropolitan area.

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling (정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석)

  • Shin, Eung-Soo;Kim, Hyun-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.

Effect of Minimum Night Temperature on Growth of Seedlings of Pinus densiflora and Betula platyphylla in Container Culture during Winter Season (소나무, 자작나무의 겨울철 시설양묘시 생장초기 야간최저온도)

  • 홍성각;윤종규;윤택승;김종진
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.163-167
    • /
    • 2002
  • This study was carried out to investigate the effect of minimum night temperature in the PE house on growth of seedlings of Pinus densiflora and Betula platyphylla in winter season. The experiment was performed with three minimum night temperature regimes,5~8$^{\circ}C$, 10~13$^{\circ}C$ and 15~18$^{\circ}C$. The temperature regimes were maintained for 8 weeks (to April 6) after germination peak, and then were broken by increasing natural temperature. The temperature did not affect the germination rate but delayed the germination by 10 days. Height, root collar diameter growth, and dry weight of two species were reduced by relatively low night temperature. The reduction was more obvious in the dry weight of above the ground measured at 8 weeks after germination. The seedlings grown for 8 weeks at 5~8$^{\circ}C$ showed the lowest T/R ratio. It was also observed that the height growth response in Betula platyphylla seedlings to relatively low temperature was more sensitive than Pinus densiflora.

Biomechanical Analysis of Lower Extremity Joints According to Landing Types during Maximum Vertical Jump after Jump Landing in Youth Sports Athletes (유소년 스포츠 선수들의 점프착지 후 수직점프 동작 시 착지 유형에 따른 하지관절의 운동역학적 분석)

  • Jiho Park;Joo Nyeon Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.3
    • /
    • pp.110-117
    • /
    • 2023
  • Objective: The purpose of this study was to find out kinematic and kinetic differences the lower extremity joint according to the landing type during vertical jump movement after jump landing, and to present an efficient landing method to reduce the incidence of injury in youth players. Method: Total of 24 Youth players under Korean Sport and Olympic Committee, who used either heel contact landing (HCG) or toe contact landing (TCG) participated in this study (HCG (12): CG height: 168.7 ± 9.7 cm, weight: 60.9 ± 11.6 kg, age: 14.1 ± 0.9 yrs., career: 4.3 ± 2.9 yrs., TCG height: 174.8 ± 4.9 cm, weight: 66.9 ± 9.9 kg, age 13.9 ± 0.8 yrs., career: 4.7 ± 2.0 yrs.). Participants were asked to perform jump landing consecutively followed by vertical jump. A 3-dimensional motion analysis with 19 infrared cameras and 2 force plates was performed in this study. To find out the significance between two landing styles independent t-test was performed and significance level was set at .05. Results: HCG showed a significantly higher dorsi flexion, extension and flexion angle at ankle, knee and hip joints, respectively compared with those of TCG (p<.05). Also, HCG revealed reduced RoM at ankle joint while it showed increased RoM at knee joint compared to TCG (p<.05). In addition, HGC showed greater peak force, a loading rate, and impulse than those of TCG (p<.05). Finally, greater planta flexion moment was revealed in TCG compared to HCG at ankle joint. For the knee joint HCG showed extension and flexion moment in E1 and E2, respectively, while TCG showed opposite results. Conclusion: Compared to toe contact landing, the heel contact landing is not expected to have an advantage in terms of absorbing and dispersing the impact of contact with the ground to the joint. If these movements continuously used, performance may deteriorate, including injuries, so it is believed that education on safe landing methods is needed for young athletes whose musculoskeletal growth is not fully mature.

Optical Properties of InAs Quantum Dots Grown by Changing Arsenic Interruption Time (As 차단 시간 변화에 의한 InAs 양자점의 광학적 특성)

  • Choi, Yoon Ho;Ryu, Mee-Yi;Jo, Byounggu;Kim, Jin Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.86-91
    • /
    • 2013
  • The optical properties of InAs quantum dots (QDs) grown on GaAs substrates grown by molecular beam epitaxy have been studied using photoluminescence (PL) and time-resolved PL measurements. InAs QDs were grown using an arsenic interruption growth (AIG) technique, in which the As flux was periodically interrupted by a closed As shutter during InAs QDs growth. In this study, the shutter of As source was periodically opened and closed for 1 (S1), 2 (S2), or 3 s (S3). For comparison, an InAs QD sample (S0) without As interruption was grown in a pure GaAs matrix for 20 s. The PL intensity of InAs QD samples grown by AIG technique is stronger than that of the reference sample (S0). While the PL peaks of S1 and S2 are redshifted compared to that of S0, the PL peak of S3 is blueshifted from that of S0. The increase of the PL intensity for the InAs QDs grown by AIG technique can be explained by the reduced InAs clusters, the increased QD density, the improved QD uniformity, and the improved aspect ratio (height/length). The redshift (blueshift) of the PL peak for S1 (S3) compared with that for S0 is attributed to the increase (decrease) in the QD average length compared to the average length of S0. The PL intensity, PL peak position, and PL decay time have been investigated as functions of temperature and emission wavelength. S2 shows no InAs clusters, the increased InAs QD density, the improved QD uniformity, and the improved QD aspect ratio. S2 also shows the strongest PL intensity and the longest PL decay time. These results indicate that the size (shape), density, and uniformity of InAs QDs can be controlled by using AIG technique. Therefore the emission wavelength and luminescence properties of InAs/GaAs QDs can also be controlled.

The Effects of Wearing Roller Shoes on Muscle Activity in The Lower Extremity During Walking (롤러신발과 일반신발의 착용 후 보행 시 하지근의 근전도 비교)

  • Chae, Woen-Sik;Lim, Young-Tae;Lee, Min-Hyung;Kim, Jung-Ja;Kim, Youn-Joung;Jang, Jae-Ik;Park, Woen-Kyoon;Jin, Jae-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to compare muscle activity in the lower extremity during walking wearing jogging and roller shoes. Twelve male middle school students (age: 15.0 yrs, height 173.7 cm, weight 587.7 N) who have no known musculoskeletal disorders were recruited as the subjects. Seven pairs of surface electrodes (QEMG8, Laxtha Korea, gain = 1,000, input impedance >$1012{\Omega}$, CMMR >100 dB) were attached to the right-hand side of the body to monitor the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and medial (GM) and lateral gastrocnemius (GL) while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and EMG recordings. EMG data were filtered using a 10 Hz to 350 Hz Butterworth band-passdigital filter and further normalized to the respective maximum voluntary isometric contraction EMG levels. For each trial being analyzed, five critical instants and four phases were identified from the recording. Averaged IEMG and peak IEMG were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p<.05). The VM, TA, BF, and GM activities during the initial double limb stance and the initial single limb stance reduced significantly when going from jogging shoe to roller shoe condition. The decrease in EMG levels in those muscles indicated that the subjects locked the ankle and knee joints in an awkward fashion to compensate for the imbalance. Muscle activity in the GM for the roller shoe condition was significantly greater than the corresponding value for the jogging shoe condition during the terminal double limb stance and the terminal single limb stance. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the GM activity for the roller shoe condition increased. It seems that there are differences in muscle activity between roller shoe and jogging shoe conditions. The differences in EMG pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine joint kinematics during walking with roller shoes.