• 제목/요약/키워드: Reduced flow rate

검색결과 775건 처리시간 0.024초

마이크로 디퓨저 내의 양 방향 동적 유동과 펌프 구동 주파수에 따른 유동정류 특성 연구 (Characterization of Bi-directionally Oscillating Microflow and Flow Rectification Performance of Microdiffusers)

  • 이영호;강태구;조영호
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.291-299
    • /
    • 2002
  • This paper characterizes hi-directionally oscillating flow in planar microdiffusers in order to evaluate the frequency-dependent flow rectification performance of the microdiffusers. In the theoretical study, we analyze a hi-directionally oscillating flow in the planar microdiffuser. In the experimental study, we fabricate two different microdiffuser prototypes, having different neck widths of 100 ㎛ (D100) and 300 ㎛(D300), respectively. The experimental net flow rates are measured as 116.6 $\mu$ι/min. and 344.4 $\mu$ι/min. for D100 and D300, respectively. The experimental flow rate of D300 decreases at the oscillating flow frequencies higher than 90Hz, at which the net boundary layer thickness is reduced to the microdiffuser neck width. It is experimentally verified that the flow rectification performance and the net flow rate of the microdiffusers tend to decrease when the boundary layer thickness is smaller than the diffuser neck width.

Enhanced UV-Visible Absorbance Detection in Capillary Electrophoresis Using Modified T-Shaped Post-Column Flow Cell

  • Lim, Kwan-Seop;Kim, Su-Hyeon;Hahn, Jong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.295-300
    • /
    • 2002
  • The construction of the T-shaped post-column flow cell has been changed to enhance the practicability as a UV-visible absorbance detector for capillary electrophoresis. In this new design, a rectangular cube-shaped inner structure is employed, which completely fits the outer rectangular tubing. This arrangement has greatly facilitated the fabrication of the T-cells. In addition, the volume for the auxiliary flow has been dramatically reduced down to 300 ${\mu}L$, and its volume flow rate is optimized at 4.2 ${\mu}L$/min. The short optical path length in the sheath flows (500 ${\mu}m$ on each side) minimizes background absorption, and thus enhances its performance in low-UV wavelengths. We have optimized the auxiliary flow rate at 50 ${\mu}m$/s, so that migration times are insensitive to the flow rate. This optimization has improved repeatabilities in migration times and peak heights. A double-beam detection scheme using a pair of photodiodes is employed to increase the signal-to-noise ratio.

지역난방 아파트에 대한 난방에너지 실측 및 시뮬레이션 (Measurement and Simulation of Heating Energy for Apartments with District Heating)

  • 이은주;이두영;홍희기;김영균
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.572-578
    • /
    • 2014
  • Heating energy was measured in an apartment housing unit with a district heating system, varying the kind of hot water distributors. Ondol coils passing through a living room raised the temperature of the room where the heating was turned off. Including this characteristic of Ondol heating into the modeling, we performed simulations and showed a verification by comparison with the results of measurements. As a result, a main flow control method, which changes hot water flow rate supplied to a housing unit according to the thermal load, can reduce the supplied flow rate and lower the return temperature, compared with a constant flow method. That can result in decreased heat loss in utility-pipe conduits even though the heating energy supplied is almost the same. An outdoor reset control that raises the temperature of the supplied hot water if the outdoor temperature falls has the effect of a quicker response in heating than the reduced flow rate and return temperature.

단상조직을 갖는 Cu-Zn합금의 고온강도에 미치는 변형속도와 온도의 영향 (Effects of Strain Rate and Temperature on the Hot Strength for Single Phase Cu-Zn Alloy)

  • 권용환;유연철
    • 소성∙가공
    • /
    • 제4권2호
    • /
    • pp.159-168
    • /
    • 1995
  • The torsion tests in the range of $550~800^{\circ}C$, $5.0{\times}10^{-3}~5.0{\times}10^0/sec$ were performed to study the effects of strain rate$(\.{\varepsilon})$ and temperature(T) on the hot strength of Cu-Zn alloy. High temperature flow stresses of this alloy increased with increasing $\.{\varepsilon}$ and/or decreasing T, and than the more grain refinement could be obtained. The flow curves exhibited a peak followed by a steady steady state regime as a result of dynamic recrystallization. The hot strength dependence of $\.{\varepsilon}$ and T was described by a hyperbolic sine law, $\.{\varepsilon}=A(sinh0.017{\sigma})^4.81$exp(-216KJ/mol). Hot strength could be reduced at the arbitary condition, $\.{\varepsilon}$ and T, by constitutive parameter Z(Zenner-Hollomon parameter), $Z=A(sinh{\alpha}{\sigma})^n=\.{\varepsilon}$exp(Q/RT).

  • PDF

초연합금절단공구상에 TiN의 화학증착피막에 관한 연구 (The Chemical Vapor Deposition of TiN on Cemented Tungsten Carbide Cutting Tools)

  • 이상래
    • 한국표면공학회지
    • /
    • 제15권3호
    • /
    • pp.138-145
    • /
    • 1982
  • The effects of the simultaneous variations of the ratio of feed gases(H2/N2 Flow ratio), feed gas flow rate (H2/N2, total-flow rate) and partial pressures of TiCl4 (PTiCl41) as well as deposition time and cobalt content of the substrate on the deposition rate of the TiN Coated Cemented Tungsten Carbide Tools were investigated. Deposition was carried out in the temperature range of 930$^{\circ}C$-1080$^{\circ}C$ and an activation energy of 46.5 Kcal/mole can be calculated. Transverse rupture strength was noticeably reduced by the TiN coating on the virgin surfa-ce of Cemented Tungsten Carbide, the extent of which was decreased according to the coa-ting thickness. Microhardness value observed on the work was in the range of 1700∼2000kg/mm, which were in well agreement with the value of bult TiN. The wear resistance of TiN layers was performed by turning test and it was observed that crater and flank resistance remarkably enhanced by TiN coating.

  • PDF

주거 환기 시스템의 공기 분배 성능 개선 방안 (A Method for Improving Air Distribution Performance at the Residence Ventilation System)

  • 박은준;김용봉;나희형;이상기
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.589-593
    • /
    • 2007
  • In the mechanical ventilation system, it is a fundamental condition to distribute the air equally to the each room. In this study, distribution performance of the air distributor which generally connected to a circular duct was investigated by simulation and experiment. In the first CFD analysis, maximum air flow rate deviation was an 63% in the air distributor model. After numbers of model modification and simulation, maximum flow rate deviation was reduced to 19% in the final simulation model. An air distributor which used in the experiment was produced by using data obtained from the final analysis. When experimental result was compared with analysis result, there was a deviation difference as much as 9%.

  • PDF

재생냉각 유로 내의 유동에 관한 수치해석 (Numerical Analysis of Fluid Flow in a Regenerative Cooling Passage)

  • 조원국
    • 한국추진공학회지
    • /
    • 제4권1호
    • /
    • pp.46-52
    • /
    • 2000
  • 축소형 액체로켓 엔진에 적용될 재생냉각유로에 대한 전산유동해석을 수행하고 결과로서 유로 내의 압력손실과 열전달률을 예측하였다. 유로의 단면적 축소/확대가 압력손실을 증가시키지만 이차유동을 유발하고 난류화를 촉진시켜 열전달률을 상승시키는 효과가 있는 것으로 밝혀졌다. 단면적 변화는 노즐목 부근에서 일어나는데 이는 열부하가 큰 노즐목을 보호하는데 효과적이다. 또한 유량 변화로 인한 재생냉각 장치의 정량적인 성능변화를 관찰하였다.

  • PDF

부력 효과의 최소화를 통한 대향류 확산화염 소화거동에 관한 실험적 연구 (Experimental Study on Extinction Behavior in Buoyancy-minimized Counterflow Diffusion Flame)

  • 정용호;박정;권오붕;윤진한;길상인;김영주
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.38-43
    • /
    • 2012
  • Experimental study was conducted to elucidate flame extinction phenomena in counterflow flame. Using a curtain helium flow significantly reduced buoyancy such that the flame can be positioned at the center between the upper and lower nozzles even at the velocity ratio of 1.0. The curves of critical diluent mole fraction versus global strain rate have C-shapes. The flame oscillation was observed prior to low strain rate flame extinction at both flame conditions with and without minimizing buoyancy force. The results show that, at low strain rate flame, the self-excitation frequency with the order of 1.0 Hz in the case of utilizing pure helium gradually decreases in increase of $N_2$ mole fraction in the curtain flow, meaning that buoyancy suppresses the self-excitation of the outer edge flame.

배기식 3중 집열창의 열적 특성에 대한 수치해석 (Numerical analysis on the thermal characteristics of the exhaust triple-glazed airflow window)

  • 김무현;오창용
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.40-49
    • /
    • 2000
  • The flow and heat transfer characteristics of the exhaust airflow window system were studied numerically by a finite volume method. Attention was paid to see the decrease in indoor cooling load. The exhaust air flow rate, solar energy power and aspect ratio of window were considered as main variables. From the result of the comparison between the exhaust airflow window and the enclosed window, the indoor heat gain was reduced remarkably by 76%. It is also suggested that in the design of the exhaust airflow window optimum values of aspect ratio, H/W and exhaust air flow rate, Re were about 0.05 and 600, respectively.

  • PDF

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.