• 제목/요약/키워드: Reduced chemical kinetic mechanism

검색결과 13건 처리시간 0.029초

[ CO/H2/Air ] 예혼합 화염에 대한 준총괄 화학반응 메커니즘 (Reduced Chemical Kinetic Mechanism for Premixed CO/H2/Air Flames)

  • 장경;차동진;주용진;이기용
    • 대한기계학회논문집B
    • /
    • 제32권2호
    • /
    • pp.133-140
    • /
    • 2008
  • A reduced chemical kinetic mechanism is developed in order to predict the flame phenomena in premixed $CO/H_2/Air$ flames at atmospheric pressure, aimed at studying the coal gas combustion for the IGCC applications. The reduced mechanism is systematically derived from a full chemical kinetic mechanism involving 11 reacting species and 66 elementary reactions. This mechanism consists of four global steps, and is capable of explicitly calculating the concentration of 7 non-steady species and implicitly predicting the concentration of 3 steady state species. The fuel blend contains two fuels with distinct thermochemical properties, whose contribution to the radical pool in the flame is different. The flame speeds predicted by the reduced mechanism are in good agreement with those by the full mechanism and experimental results. In addition, the concentration profiles of species and temperature are also in good agreement with those by the full mechanism.

고속 직분식 디젤 엔진에서의 점화지연시기 예측 (Prediction of Ignition Delay for HSDI Diesel Engine)

  • 임재만;김용래;온형석;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1704-1709
    • /
    • 2004
  • New reduced chemical kinetic mechanism for prediction of autoignition process of HSDI diesel engine was investigated. For precise prediction of the ignition characteristics of diesel fuel, mechanism coefficients were fitted by the experimental results of ignition delay of diesel spray in a constant volume vessel. Ignition delay of diesel engine on various operation condition was calculated based on the new reduced chemical mechanism. The calculation results agreed well with experimental data.

  • PDF

모사 디젤 화학반응 메커니즘의 각 성분이 화학적 점화 지연 시간에 미치는 영향에 관한 기초 연구 (Fundamental Study on the Chemical Ignition Delay Time of Diesel Surrogate Components)

  • 김규진;이상열;민경덕
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.74-81
    • /
    • 2013
  • Due to its accuracy and efficiency, reduced kinetic mechanism of diesel surrogate is widely used as fuel model when applying 3-D diesel engine simulation. But for the well-developed prediction of diesel surrogate reduced kinetic mechanism, it is important to know some meaningful factors which affect to ignition delay time. Meanwhile, ignition delay time consists of two parts. One is the chemical ignition delay time related with the chemical reaction, and the other is the physical ignition delay time which is affected by physical behavior of the fuel droplet. Especially for chemical ignition delay time, chemical properties of each fuel were studied for a long time, but researches on their mixtures have not been done widely. So it is necessary to understand the chemical characteristics of their mixtures for more precise and detailed modeling of surrogate diesel oil. And it shows same ignition trend of paraffin mixture with those of single component, and shorter ignition delay at low/high initial temperature when mixing paraffin and toluene.

CAI 엔진 해석을 위한 multi-zone 연소 모델의 개발 (Development of a Multi-zone Combustion Model for the Analysis of CAI Engines)

  • 이경현;임재만;김용래;민경덕
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.74-80
    • /
    • 2008
  • A combustion of CAI engine is purely dominated by fuel chemical reactions. In order to simulate the combustion of CAI engine, it should be considered the effect of fuel components and chemical kinetics. So it needs enormous computational power. To overcome this problem reduced problem of needing massive computational power, chemical kinetic mechanism and multi-zone method is proposed here in this paper. A reduced chemical kinetic mechanism for a gasoline surrogate was used in this study for a CAI combustion. This gasoline surrogate was modeled as a blend of iso-octane, n-heptane, and toluene. For the analysis of CAI combustion, a multi-zone method as combustion model for a CAI engine was developed and incorporated into the computational fluid dynamics code, STAR-CD, for computing efficiency. This coupled multi-zone model can calculate 3 dimensional computational fluid dynamics and multi-zoned chemical reaction simultaneously in one time step. In other words, every computational cell interacts with the adjacent cells during the chemical reaction process. It can enhance the reality of multi-zone model. A greatly time-saving and yet still relatively accurate CAI combustion simulation model based on the above mentioned two efficient methodologies, is thus proposed.

Application of Chemical Ionization Mass Spectrometry to Heterogeneous Reactions of OH with Aerosols of Tropospheric Interest

  • Park, Jong-Ho
    • Mass Spectrometry Letters
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Studies performed on heterogeneous reactions of hydroxyl radicals (OH) in aerosol materials of tropospheric interest are presented, focusing on the chemical ionization mass spectrometric approach. Kinetic investigations of these reactions reduced deviation in the estimation of OH concentration in the troposphere by atmospheric modeling from field measurements. Recently, OH uptake was investigated under wet conditions to acquire kinetic information under more realistic conditions representative of the troposphere. The information on the mechanism and kinetics of OH uptake by tropospheric aerosol materials will contribute to the updating of atmospheric models, allowing a better understanding of the troposphere.

Generation of a skeletal mechanism of coal combustion based on the chemical pathway analysis

  • Ahn, Seongyool;Watanabe, Hiroaki;Shoji, Tetsuya;Umemoto, Satoshi;Tnno, Kenji
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.5-7
    • /
    • 2014
  • A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic mechanism through an importance analysis of chemical pathways. The reduction process consists of roughly two parts. The first process is performed based on a connectivity analysis between species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species and related reactions from the important species set as start species by the operator are sorted into the reduced mechanism. About 70% of species and reactions can be removed with a limited accuracy loss. Subsequently the second reduction process, CSP, is performed. This method focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 reactions. The generated skeletal mechanism is verified through a comparison with the detailed mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of conditions. The generated mechanism can give an advantage in the analysis of coal combustion characteristics in detail in large scale simulations such as LES and DNS.

  • PDF

Kinetic Investigation on the Reaction between Cu(II) and Excess D-penicillamine in Aqueous Media

  • Lee, Yong-Hwan;Choi, Sung-Nak;Cho, Mi-Ae;Kim, Yong-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권4호
    • /
    • pp.281-286
    • /
    • 1990
  • The kinetics and mechanism of reduction of Cu(II) with an excess D-penicillamine have been examined at pH = 6.2 and 0.60M in ionic strength. The reaction at the initial stage is biphasic with a rapid complexation process to give "red" transient complex of $[Cu(II)(pen)_2]^2$- that is partially reduced to another transient "brown" intermediate. The "brown" intermediate is finally reduced to diamagnetic "yellow" complex, $[Cu(I)(Hpen)]_n$. The final reduction process is pseudo-first order in ["brown" transient] disappearance $with {\kappa} = {{\kappa}_{3a} + {\kappa}_{3b}[pen]^{2-}},$ where ${\kappa}_{3a} = (5.0{\pm}0.8){\times}10^{-3}sec^{-1}$ and ${\kappa} = (0.14{\pm}0.02) M^{-1}sec^{-1}$ at $25^{\circ}C$. The activation parameters for the $[H_2pen]$-independent and $[H_2pen]$-dependent paths are ${\Delta}H^{\neq} = (52{\pm}5)kJmol^{-1},$ and ${\Delta}S^{\neq} = ( - 27{\pm}3)JK^{-1}mo^{l-1},$ and ${\Delta}H^{\neq} = (56{\pm}2)kJmol^{-1}$ and ${\Delta} S^{\neq} = ( - 18{\pm}0.7)JK^{-1}mol^{-1}$ respectively. The nature of "brown" intermediate is not clearly identified, but this intermediate seems to be in the mixed-valence state, judging from the kinetic and spectroscopic informations.

황산 촉매를 이용한 글루코오스로부터 5-HMF 및 레불린산 생산을 위한 동역학적 연구 (Kinetic Study of Glucose Conversion to 5-hydroxymethylfurfural and Levulinic Acid Catalyzed by Sulfuric Acid)

  • 한석준;이승민;김준석
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.193-201
    • /
    • 2022
  • 바이오매스로부터 얻는 5-HMF(5-hydroxymethylfurfural)과 레불린산(LA; levulinic acid)는 그린 플랫폼 화학물질로, 폭넓은 응용분야를 가지며 바이오연료 및 바이오 화학물질로써 사용된다. 본 연구에서는, 글루코오스(D-glucose) 분해로부터 레불린산 형성의 kinetic를 다양한 온도 및 황산 농도를 통해 연구하였다. 실험은 황산 촉매(1-3 wt%)을 사용하였으며, 온도(140-200 ℃)는 넓은 범위에서 수행되었다. 글루코오스 용액은 10 ml 황산 용액에 글루코오스 1g을 용해시켜 만들었다. 반응 속도는 온도에 따라 증가하였고 활성화 에너지는 이전에 보고된 값과 유사한 경향을 보였다. 5-HMF의 최대 농도에 대한 반응 시간은 온도가 증가함에 따라 감소하였다. 또한, 산 농도가 증가함에 따라 5-HMF의 분해속도가 빨라졌다. 황산 촉매의 농도가 증가함에 따라 레불린산의 최대 농도에 도달하는 시간이 줄어들었다. 온도를 계속 높이는 것은 레불린산의 최대 농도를 감소시켰고 휴민의 양을 증가시켰다. 결과를 통해 얻은 kinetic parameters는 5-HMF과 레불린산의 mechanism를 이해하는데 도움을 준다. 또한, 이 연구의 결과는 바이오매스에서 고농도의 레불린산 및 5-HMF를 얻어내는데 유용한 정보를 제공한다.

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on H$_2$-Reduced NiO-Doped $\alpha$-Fe$_2O_3$

  • Kim, Don;Kim, Keu-Hong;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권2호
    • /
    • pp.81-84
    • /
    • 1988
  • The CO oxidation was performed on $H_2$-reduced NiO-${\alpha}-Fe_2O_3$ in the temperature range 150-$250^{\circ}C$. The kinetic study and the conductivity measurements indicate the oxidation reaction follows Langmuir-Rideal type process that is uncommon in heterogeneous catalyst$^1$. No active site is found on the catalyst surface for CO adsorption, but an oxygen vacancy adsorbs an oxygen, and this step is rate initiation. The partial orders are half for $O_2$ and first for CO, respectively. Apparent activation energy for over-all reaction is 9.05 kcal/mol.

Regulatory Mechanism of L-Alanine Dehydrogenase from Bacillus subtilis

  • 김수자;김유진;서미란;전봉숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권12호
    • /
    • pp.1217-1221
    • /
    • 2000
  • L-alanine dehydrogenase from Bacillus subtilis exhibits allosteric kinetic properties in the presence of $ZN^{2+}$. $ZN^{2+}$ induces the binding of substrate (L-alanine) to be cooperative at pH 8.0. The effect of pH variation between pH 7.0 and pH 10.0 on the inhibition by $ZN^{2+}$ correlates with the pH effect on the $K_m$ values for L-alanine within these pH range indicating that $ZN^{2+}$ and substrate compete for the same site. No such cooperativity is induced by $ZN^{2+}$ when the reaction is carried out at pH 10. At this higher pH, $ZN^{2+}$ binds with the enzyme with lower affinity and noncompetitive with respect to L-alanine. Inhibition of L-alanine dehydrogenase by $ZN^{2+}$ depends on the ionic strength. Increase in KCI concentration reduced the inhibition, but allosteric property in $ZN^{2+}$ binding is conserved. A model for the regulatory mechanism of L-alanine dehydrogenase as a noncooperative substrate-cooperative cofactor allosteric enzyme, which is compatible in both concerted and the sequential allosteric mechanism, is proposed.