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Generation of a skeletal mechanism of coal combustion

based on the chemical pathway analysis
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ABSTRACT

A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic 
mechanism through an importance analysis of chemical pathways. The reduction process consists 
of roughly two parts. The first process is performed based on a connectivity analysis between 
species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species 
and related reactions from the important species set as start species by the operator are sorted 
into the reduced mechanism. About 70% of species and reactions can be removed with a limited 
accuracy loss. Subsequently the second reduction process, CSP, is performed. This method 
focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. 
Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 
reactions. The generated skeletal mechanism is verified through a comparison with the detailed 
mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of 
conditions. The generated mechanism can give an advantage in the analysis of coal combustion 
characteristics in detail in large scale simulations such as LES and DNS. 
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A detailed coal combustion kinetic mechanism 
which includes high-carbon species such as poly 
aromatic hydrocarbons (PAH) was presented by 
Richter in the previous literature[1]. This 
mechanism is verified by the works predicting coal 
combustion characteristics and extended to soot 
formation[2-4]. The combustion kinetic is presented 
with 257 species 1107 reactions in this mechanism. 
It is hard to apply this mechanism on large scale 
simulations such as LES or DNS directly, so it 
would be reduced through a reasonable process. 
For this work, we performed two-step reduction 
process based on a combined process proposed by 
Ismael et al.[5] as presented in Fig. 1. These 
combined process can cover drawbacks of single 
methods and generate a skeletal mechanism more 
efficiently.
   The detailed mechanism is analyzed through a 
species-based method, directed relation graph with 
error propagation and sensitivity analysis 
(DRGEPSA) proposed by Niemeyer et al. first[6]. 
In this process, ten species such as fuels, oxidant, 

and interesting species for an analysis of PAH 
reactive characteristics are determined as important 
species for reduction operation. Strongly connected 
species are chosen for a skeletal mechanism based 
on the reaction rate of each related reaction under 
wide range of conditions, temperature 
(1,100~2,000K), equivalence ratio (0.5~1.5), and 
pressures (1, 2 atm). 
  Fig. 2 shows the result of the first step, 
DRGEP[7]. As the threshold increase, the error 
increase whereas reaction moves opposite tenancy. 
In this step, the error increase rapidly when the 
threshold is changed from 8E-4 to 1E-3. So, we 
set the maximum error to 10%, and determine the 
optimal condition as 8E-4. From this process, a 
118 species is remained.
  Subsequently, a sensitivity of each remained 
species is tested and the result is presented in Fig. 
3[6]. As described in the figure, the error touches 
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Fig. 2 Number of species and error by threshold 
values

Fig. 4 Number of reactions and error by 
threshold values

Fig. 3 Number of reactions and error by species 
removal

Fig. 5 Ignition delay time of the detailed 
mechanism and the skeletal mechanism

the 30% line first when the 16 species are 
removed. Then, the error moves to a lower level 
and keep the value until the 47 species are 
removed. Through the comparison of combustion 
characteristics between two points in the 
CHEMKIN-PRO, it is confirmed that the second 
point can be selected as the optimal condition. 
Through these two species-based analysis, 186 
species and 831 reactions are removed well with 
acceptable accuracy loss, 30% in the ignition delay 
time and mole fraction of important species. 
  A reaction-based analysis, computational singular 
perturbation (CSP) is performed to sort out a 
redundant part of mechanism[8]. In this process, 
each reaction is evaluated by importance index 
presented in the previous literature and the result is 
presented in Fig. 4[8]. The error increases rapidly 
at the threshold value 0.08, but we decide to keep 
the maximum allowed error 30%. The error over 
the limit slightly at the threshold value 8E-4. 
However, it does not changed much even the 

threshold value continuously increase. And then, it 
over the maximum line at the threshold 0.02 
clearly. So, the threshold value 1E-3 is selected as 
the optimal condition in this analysis. 
  Two more species which have very low peak 
mole concentration is eliminated lastly. So, a 
skeletal mechanism which has 65 species and 150 
reactions is generated for a coal combustion, 
especially PAH reactions. This generated 
mechanism is verified by a comparison with the 
detailed mechanism in the homogeneous reactor of 
CHEMKIN-PRO and the result is presented in Fig. 
5. The error is lower than 30% in all test 
conditions, and it is around 10-15% in the main 
reaction field, temperature 1200-1500 K. It will 
give an advantage of calculation in a large scale 
simulations.
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