• Title/Summary/Keyword: Redox pairs

Search Result 10, Processing Time 0.034 seconds

Redox Pairs in Redox Flow Batteries (레독스 플로우 전지의 레독스 쌍)

  • Hwang, Byunghyun;Kim, Ketack
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.99-110
    • /
    • 2013
  • Redox flow batteries are attractive energy-storage devices for renewable energy and peak-power energy control. Even though some prototypes are available already, many new materials are under development for new battery systems. In this reports, redox pairs and theirs properties are explained, by which one can understand issues with redox pairs, such as contaminations, cross-over, ionic selectivity, and solubility. Batteries that have the same redox pairs in both electrode compartments can be operated longer than those with different redox pairs due to the prevention form the cross-contamination. There are undivided redox flow batteries that have no membrane, which is another direction improving cycle life of the batteries.

Thermodynamic Analysis of Thermochemical Process for Water Splitting (고온열 이용 공정의 열역학적 해석)

  • Kim, Jong-Won;Son, Hyun-Myung;Lee, Sana-Ho;Sim, Kyu-Sung;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.204-213
    • /
    • 2002
  • In this work, hydrogen production by a 2-step water-spritting thermochemical cycle based on metal oxides redox pairs was investigated on the bases of the thermodynamics and technical feasibility. Also, a 2nd-law analysis performed on the closed cyclic process indicates a maximum exergy conversion efficiency of 7.1% when using a solar cavity-receiver operated at 2300K and air/Fe3O4 molar ratio = 10.

Conducting Polypyrrole Doped with Hexacyanoferrate Anions: an Electrochemical and Spectroscopic Study

  • Han Junghee;Lee Seungjun;Paik Woon-kie
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.419-425
    • /
    • 1992
  • Conducting polypyrrole doped with iron (Ⅱ,Ⅲ) hexacyanate Fe$(CN)_6^{z-}$ ions was studied for its physical and electrochemical properties. The polymer exhibited two pairs of waves in the cyclic voltammogram, one for the reversible oxidation/reduction of the incorporated iron hexacyanate ions and the other for the near-reversible oxidation/reduction of the polypyrrole moiety. The exchange of ions incorporated in the polymer and other ions present in solutions were examined by following the decrease of the reversible redox peaks of Fe$(CN)_6^{z-}$, and by EDX analysis. The spin density of this highly conducting polymer as probed by ESR spectroscopy was extremely low compared to polypyrrole doped with common anions.

Poly-3,4-dihydroxybenzoic Acid Film Electrodes Modified with Dopamine for Determination of Ti(IV) Ions (도파민으로 수식된 3,4-dihydroxybenzoic acid 고분자 피막전극을 이용한 Ti(IV)이온의 정량)

  • Cha, Seong-Keuck
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.130-133
    • /
    • 2003
  • 3,4-dihydroxybenzoic acid(3,4-DHBA) was electropolymerized on glassy carbon electrode to give the GC/p-3,4-DHBA type electrode which was modified with dopamine by the help of 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride(EDC) acting as a coupling agent. The carboxylic sites on the polymeric surface of p-3,4-DHBA and mine group at the dopamine gave a QCA(Au)/p-3,4-DHBA-dopamine type of modified electrodes. The o-quinone moieties at the electrode surface exhibited high selectivity to titanium ions in solution. The redox process of the electrode is hydroquinone : quinone +$2H^+2e^-$, which had two strong and two weak pairs of peaks at CV. The modified electrode can deposit Ti(IV) ions as much as $4.13\times10^{-5}gcm^{-2}$. The calibration curve of the electrodes, log of the surface coverage-normalized redox response vs log[Ti], exhibited an excellent correlation$(r{\geq}0.997)$ for titanium concentrations ranging from $5.25\times10^{-4}\;to\;5.25\tiems10^{-8}M.$.

Pyro-synthesis of Na2FeP2O7 Nano-plates as Cathode for Sodium-ion Batteries with Long Cycle Stability

  • Song, Jinju;Yang, Juhyun;Alfaruqi, Muhammad Hilmy;Park, Wangeun;Park, Sohyun;Kim, Sungjin;Jo, Jeonggeun;Kim, Jaekook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.406-410
    • /
    • 2016
  • Carbon-coated sodium iron pyrophosphate ($Na_2FeP_2O_7$) was prepared by a simple and low-cost pyro-synthesis route for further use as the cathode for Na-ion batteries. The X-ray diffraction (XRD) pattern of the sample annealed at $650^{\circ}C$ confirmed the pure triclinic phase of $Na_2FeP_2O_7$. Electron microscopy studies revealed a cross linked plate shape morphology of the $Na_2FeP_2O_7$ sample. When tested for application in Na-ion battery, the $Na_2FeP_2O_7$ cathode showed two redox pairs in the potential window of 2.0-4.0 V. The cathode registered initial discharge and charge capacities of 80.85 and 90 mAh/g, respectively, with good cycling performance.

Computational Identification and Comparative Genomic Analysis of Soybean Oxidative Stress-Related Genes

  • Arti, Sharma;Mun, Bong-Gyu;Yun, Byung-Wook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • Reactive oxygen and nitrogen species (ROS and RNS, respectively) are messengers that carry signals to alter the redox state in order to activate plant responses and other physiological processes, such as differentiation, aging, senescence, and pathogen defense. Quite a large number of genes are involved in this signaling and lead to oxidative stress in plants. Although the role of ROS/RNS during stress conditions is well documented, a comprehensive list of genes and comparative study of these genes has not yet been completed. Accordingly, the in silico identification of oxidative stress-related genes was performed for soybeans and Arabidopsis. These genes were also studied in relation to multiple domain prediction. The presence of domains like dehydogenase and ATPase suggests that these genes are involved in various metabolic processes, as well as the transportation of ions under optimal environmental conditions. In addition to a sequence analysis, a phylogenetic analysis was also performed to identify orthologous pairs among the soybean and Arabidopsis oxidative stress-related genes based on neighbor joining. This study was also conducted with the objective of further understanding the complex molecular signaling mechanism in plants under various stress conditions.

Experimental Investigation on High Efficient Electrolytes of Electrochemical Photovoltaic Cells (전기화학형 광전변환 셀의 고효율 전해질 제작에 관한 실험적 고찰)

  • Kim, Doo-Hwan;Han, Chi-Hwan;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.100-104
    • /
    • 2011
  • In this work, an optimum condition of electrolytes preparation for photovoltaic cells application was investigated experimentally in terms of impedance and conversion efficiency of the cells. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as stable solvents for fabrication of electrolyte. Efficiency comparison of the prepared cells carried out for various additives and ionic liquids. From the results, there was an optimum concentration (about 0.3 M) of ionic liquids for efficient cell fabrication. For case of electrolyte using single DMAp additive, the maximum conversion efficiency of the cell was 6.4%($V_{oc}$: 0.78V, $J_{sc}$: 14.4 mA/$cm^2$, ff: 0.57). For case of electrolyte using both DMAp and CEMim additives, the maximum conversion efficiency of the cell was 7.2%($V_{oc}$: 0.79V, $J_{sc}$: 16 mA/$cm^2$, ff: 0.57). From the result of electrochemical impedance measurement, both Z1 and Z3 values of binary additives-based cell decreased compared to those of single additive-based. This is due to the decreased in internal and charge transfer resistivities of the cells.

Study of Enhanced Photovoltaic Performance with Optimized Electrolytes and Blocking Layer Formation (차단막 형성과 전해질의 최적화에 의한 광전변환 효율 개선 연구)

  • Park, Hee-Dae;Joo, Bong-Hyun;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.50-54
    • /
    • 2013
  • In this work, the effects of blocking layer and optimally fabricated electrolyte were investigated with respect to impedance and conversion efficiency of the cells.A layer of $TiO_2$ less than ~200nm in thickness, as a blocking layer, was deposited by rf sputtering onto the F:$SnO_2$ (FTO) glass to be isolated from the electrolyte in dye-sensitized solar cells (DSCs). Also, optimum condition of electrolytes preparation for DSCs was investigated. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as solvents for fabrication of electrolyte. The electrochemical impedances of DSCs using this photo-anode were $R_1$: 13.8, $R_2$: 15.1, $R_3$: 11.9 and $R_h$: $8.3{\Omega}$, respectively. The $R_2$ impedance related by electron transportation from porous $TiO_2$ to FTO showed lower than that of normal DSCs. The photo-conversion efficiency of prepared DSCs was 6.4% and approximately 1.3% higher than general one.

CO2 Reduction and C2H4 Production Using Nanostructured Gallium Oxide Photocatalyst (산화갈륨 나노구조 광촉매 특성을 이용한 이산화탄소 저감 및 에틸렌 생성 작용)

  • Seo, Dahee;Ryou, Heejoong;Seo, Jong Hyun;Hwang, Wan Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.308-310
    • /
    • 2022
  • Ultrawide bandgap gallium oxide (Ga2O3) semiconductors are known to have excellent photocatalytic properties due to their high redox potential. In this study, CO2 reduction is demonstrated using nanostructured Ga2O3 photocatalyst under ultraviolet (254 nm) light source conditions. After the CO2 reduction, C2H4 remained as a by-product in this work. Nanostructured Ga2O3 photocatalyst also showed an excellent endurance characteristic. Photogenerated electron-hole pairs boosted the CO2 reduction to C2H4 via nanostructured Ga2O3 photocatalyst, which is attributed to the ultrawide and almost direct bandgap characteristics of the gallium oxide semiconductor. The findings in this work could expedite the realization of CO2 reduction and a simultaneous C2H4 production using a low cost and high performance photocatalyst.

Two-step thermochemical cycle using metal oxide and CH4 (금속산화물과 CH4를 이용한 2단계 열화학 사이클)

  • Lee, S.H.;Park, Y.C.;Kim, J.W.;Sim, K.S.;Jung, K.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.219-229
    • /
    • 2001
  • Hydrogen production by a 2-step water-splitting thermochemical cycle using metal oxides (ferrites) redox pairs and $CH_4$ have been studied in this experiment. The ferrites were reacted with $CH_4$ at $700{\sim}800^{\circ}C$ to produce CO, $H_2$ and various reduced phases (reduction step); these were then reoxidized with water vapor to generate $H_2$ in water-splitting step (oxidation step) at $600{\sim}700^{\circ}C$. The reduced ferrites, Ni-FeO and Ni-Fe alloy showed respectively different reactivity for $H_2$ formation from $H_2O$. In reduction reaction at $800^{\circ}C$, carbon was deposited on surface of Ni-ferrite due to $CH_4$ decomposition. This reduced phase containing carbon, which was taken quite different feature from other phase, produced $H_2$, CO, $CO_2$ by reacting with $H_2O$ at $600^{\circ}C$. The amount of $H_2$ evolved using reduced phase containing carbon was much higher than that of other phase.

  • PDF