Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.3.15

CO2 Reduction and C2H4 Production Using Nanostructured Gallium Oxide Photocatalyst  

Seo, Dahee (Department of Materials Science and Engineering, Korea Aerospace University)
Ryou, Heejoong (Department of Materials Science and Engineering, Korea Aerospace University)
Seo, Jong Hyun (Department of Materials Science and Engineering, Korea Aerospace University)
Hwang, Wan Sik (Department of Materials Science and Engineering, Korea Aerospace University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.3, 2022 , pp. 308-310 More about this Journal
Abstract
Ultrawide bandgap gallium oxide (Ga2O3) semiconductors are known to have excellent photocatalytic properties due to their high redox potential. In this study, CO2 reduction is demonstrated using nanostructured Ga2O3 photocatalyst under ultraviolet (254 nm) light source conditions. After the CO2 reduction, C2H4 remained as a by-product in this work. Nanostructured Ga2O3 photocatalyst also showed an excellent endurance characteristic. Photogenerated electron-hole pairs boosted the CO2 reduction to C2H4 via nanostructured Ga2O3 photocatalyst, which is attributed to the ultrawide and almost direct bandgap characteristics of the gallium oxide semiconductor. The findings in this work could expedite the realization of CO2 reduction and a simultaneous C2H4 production using a low cost and high performance photocatalyst.
Keywords
Gallium oxide; Photocatalyst; Carbon dioxide; Ethylene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal, and J. Perez-Ramirez, Energy Environ. Sci., 6, 3112 (2013). [DOI: https://doi.org/10.1039/C3EE41272E ]   DOI
2 J. Ran, M. Jaroniec, and S. Z. Qiao, Adv. Mater., 30, 1704649 (2018). [DOI: https://doi.org/10.1002/adma.201704649]   DOI
3 H. M. Jeong, Y. Kwon, J. H. Won, Y. Lum, M. J. Cheng, K. H. Kim, M. Head-Gordon, and J. K. Kang, Adv. Energy Mater., 10, 1903423 (2020). [DOI: https://doi.org/10.1002/aenm.201903423]   DOI
4 F. Tian, H. Zhang, S. Liu, T. Wu, J. Yu, D. Wang, X. Jin, and C. Peng, Appl. Catal., B, 285, 119834 (2021). [DOI: https://doi.org/10.1016/j.apcatb.2020.119834]   DOI
5 T. H. Yoo, H. Ryou, I. G. Lee, J. Cho, B. J. Cho, and W. S. Hwang, Catalysts, 10, 545 (2020). [DOI: https://doi.org/10.3390/catal10050545]   DOI
6 M. Akatsuka, Y. Kawaguchi, R. Itoh, A. Ozawa, M. Yamamoto, T. Tanabe, and T. Yoshida, Appl. Catal., B, 262, 118247 (2020). [DOI: https://doi.org/10.1016/j.apcatb.2019.118247]   DOI
7 K. Teramura, H. Tsuneoka, T. Shishido, and T. Tanaka, Chem. Phys. Lett., 467, 191 (2008). [DOI: https://doi.org/10.1016/j.cplett.2008.10.079]   DOI
8 E. M. Gaigneaux, M. Devillers, S. Hermans, P. Jacobs, J. Martens, and P. Ruiz, Proc. 10th International Symposium, Louvain-la-Neuve (Elsevier, Belgium, 2010) p. 351.
9 J. Hao, D. Yang, J. Wu, B. Ni, L. Wei, Q. Xu, Y. L. Min, and H. Li, Chem. Eng. J., 423, 130190 (2021). [DOI: https://doi.org/10.1016/j.cej.2021.130190 ]   DOI
10 H. Tsuneoka, K. Teramura, T. Shishido, and T. Tanaka, J. Phys. Chem. C, 114, 8892 (2010). [DOI: https://doi.org/10.1021/jp910835k]   DOI