• Title/Summary/Keyword: Redox characteristics

Search Result 172, Processing Time 0.037 seconds

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems (고분자 이온교환막의 제조와 이온교환막을 이용한 에너지 공정)

  • Kim, Jae-Hun;Ryu, Seungbo;Moon, Seung-Hyeon
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.79-96
    • /
    • 2020
  • Secondary energy conversion systems have been briskly developed owing to environmental issue and problems of fossil fuel. They are basically operated based on electro-chemical systems. In addition, ion exchange membranes are one of the significant factors to determine performance in their systems. Therefore, the ion exchange membranes in suitable conditions must be developed to improve the performance for the electro-chemical systems. These ion exchange membranes can be classified into various types such as cation exchange membrane, anion exchange membrane and bipolar membrane. Their membranes have distinct characteristics according to the chemical, physical and morphological structure. In this review, the types of ion exchange membranes and their fabrication processes are described with main characteristics. Moreover, applications of ion exchange membranes in newly developed energy conversion systems such as reverse electrodialysis, redox flow battery and water electrolysis process are described including their roles and requirements.

MnO2 co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode (MnO2 조촉매가 코팅된 GaN 광전극의 광전기화학적 특성)

  • Kim, Haseong;Bae, Hyojung;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.113-117
    • /
    • 2016
  • Recently, hydrogen is regarded as important energy in the future, because it is clean and renewable. The photoelectrochemical (PEC) system, which produce hydrogen using water splitting by solar energy, is one of the most promising energy systems because it has abundant energy sources and good theoretical efficiency. GaN has recently been regarded as suitable photoelectrode that could be used to split water to generate hydrogen without extra bias because its band edge position include water redox potential ($V_{redox}=1.23$ vs. SHE). GaN also shows considerable corrosion resistance in aqueous solutions and it is possible to control its properties, such as structure, band gap, and catalyst characteristics, in order to improve solar energy conversion efficiency. But, even if the band edge position of GaN make PEC reaction facilitate without bias, the overpotential of oxygen evolution reaction could reduce the efficiency of system. One of the ways to decrease overpotential is introduction of co-catalyst on photoelectrode. In this paper, we will investigate the effect of manganese dioxide ($MnO_2$) as a co-catalyst. $MnO_2$ particles were dispersed on GaN photoelectrode by spincoater and analyzed properties of the PEC system using potentiostat (PARSTAT4000). After coating $MnO_2$, the flat-band potential ($V_{fb}$) and the onset voltage ($V_{onset}$) were moved negatively by 0.195 V and 0.116 V, respectively. The photocurrent density increased on $MnO_2$ coated sample and time dependence was also improved. These results showed $MnO_2$ has an effect as a co-catalyst and it would enhance the efficiency of overall PEC system.

Surface Characteristics and Antifouling Performance of Inorganic MnOx-WO3-TiO2 Nanopowder for Self-polishing Copolymer Paint Applications (무기계 MnOx-WO3-TiO2 나노분말의 표면특성 및 자기마모형 수지 적용성 평가)

  • Shin, Byeongkil;Park, Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.253-258
    • /
    • 2016
  • The $MnO_x-WO_3-TiO_2$ nanoscale powders were synthesized by sol-gel method in order to prevent the biological fouling on the ships and offshore structures. Powder characteristics and antifouling performance were investigated with respect to the crystalline, microstructure and surface property for application in self-polishing copolymer resins. The high antifouling activity of $TiO_2$-system biocide was attributed to its redox potential and soluble metal ions originating from tungsten oxides according to the improvements in the powder characteristics. Based on their physio-chemical characterizations, the specific surface areas of powders were about $90m^2/g$ and the grain size was in the region 100 ~ 150 nm. Powder characteristics and surface properties were improved by the addition of $WO_3$. Antifouling performance were analyzed according to their surface properties and static immersion tests to determine the effects of the $TiO_2$-system compounds. The surface of 2 wt. % added sample was clean for 5 month. This may be attributed to the ability of $MnO_x-WO_3-TiO_2$ powders to act as a promoter in antifouling agents.

Preparation and properties of $LiCoO_2$ cathode for Li rechargeable cell (리튬 2차전지용 $LiCoO_2$양극의 제조 및 특성)

  • 문성인;정의덕;도칠훈;윤문수
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.317-324
    • /
    • 1994
  • In this study, new preparation method of LiCoO$_{2}$ was applied to develop cathode active material for Li rechargeable cell, and followed by X-ray diffraction analysis, electrochemical properties and initial charge/discharge characteristics as function of current density. HC8A72- and CC9A24-LiCoO$_{2}$ were prepared by heating treatment of the mixture of LiOH H$_{2}$O/CoCO$_{3}$(1:1 mole ratio) and the mixture of Li$_{2}$CO$_{3}$/CoCO$_{3}$(1:2 mole ratio) at 850 and 900.deg. C, respectively. Two prepared LiCoO$_{2}$s were identified as same structure by X-ray diffraction analysis. a and c lattice constant were 2.816.angs. and 14.046.angs., respectively. The electrochemical potential of CFM-LiCoO$_{2}$(Cyprus Foote Mineral Co.'s product), HC8A72-LiCoO$_{2}$ and CC9A24 LiCoO$_{2}$ electrode were approximately between 3.32V and 3.42V vs. Li/Li reference electrode. Stable cycling behavior was obtained during the cyclic voltammetry of LiCoO$_{2}$ electrode. According as scan rate increases, cathodic capacity decreases, but redox coulombic efficiency was about 100% at potential range between 3.6V and 4.2V vs. Li/Li reference electrode. Cathodic capacity of HC8A72-LiCoO$_{2}$ was 32% higher than that of CFM-LiCoO$_{2}$ and that of CC9A24-LiCoO$_{2}$ was 47% lower than that of CFM-LiCoO$_{2}$ at 130th cycle in the condition of lmV/sec scan rate. Constant cur-rent charge/discharge characteristics of LiCoO$_{2}$/Li cell showed increasing Ah efficiency with initial charge/discharge cycle. Specific discharge capacities of CFM and HC8A72-LiCoO$_{2}$ cathode active materials were about 93mAh/g correspondent to 34% of theretical value, 110mAh/g correspondent to 40% of theretical value, respectively. In the view of reversibility, HC8A72-LiCoO$_{2}$ was also more excellent than CFM- and CC9A24-LiCoO$_{2}$.

  • PDF

Characterization of Nitrate Contamination and Hydrogeochemistry of Groundwater in an Agricultural Area of Northeastern Hongseong (홍성 북동부 농촌 지역 지하수의 질산성 질소 오염과 수리지구화학적 특성)

  • Ki, Min-Gyu;Koh, Dong-Chan;Yoon, Heesung;Kim, Hyun-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.33-51
    • /
    • 2013
  • Spatial and temporal characteristics of nitrate contamination and hydrogeochemical parameters were investigated for springs and surficial and bedrock groundwaters in northeastern part of Hongseong. Two field investigations were conducted at dry and wet seasons in 2011 for 120 sites including measurement of field parameters with chemical analyses of major dissolved constituents. Nitrate concentrations were at background levels in springs while 45% of bedrock groundwater and 49% of surficial groundwater exceeded the drinking water standard of nitrate (10 mg/L as $NO_3$-N). The difference in nitrate concentrations between surficial and bedrock groundwater was statistically insignificant. Cumulative frequency distribution of nitrate concentrations revealed two inflection points of 2 and 16 mg/L as $NO_3$-N. Correlation analysis of hydrogeochemical parameters showed that nitrate had higher correlations with Sr, Mg, Cl, Na, and Ca, in surficial groundwater in both dry and wet season. In contrast, nitrate had much weaker correlations with other hydrogeochemical parameters in bedrock groundwater compared to surficial groundwater and had significant correlations only in wet season. Temporally, nitrate and chloride concentrations decreased and dissolved oxygen (DO) increased from dry season to wet season, which indicates that increased recharge during the wet season affected groundwater quality. Aerobic conditions were predominant for both surficial and bedrock groundwater indicating low natural attenuation potential of nitrate in the aquifers of the study area.

Characteristics of Variation of Phosphorus and Redox Potential in an Experimental Paddy Field (필지논에서의 인(P) 과 산화환원전위(Eh)의 변화 특성)

  • Kim, Young-Hyeon;Kim, Jin-Soo;Jang, Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.602-607
    • /
    • 2009
  • 논에서 수질변화특성에 관한 메카니즘은 매우 복잡하다. 영양물질의 농도특성을 정확히 파악하기 위해서는 영농활동에 따른 체계적인 모니터링을 통한 다양한 측정 자료가 필요하다. 그러나 현재 논에서 토양의 산화환원에 관한 연구 자료는 많지 않기 때문에 그의 특성을 파악하기에는 어려운 실정에 있다. 본 연구의 목적은 충북대학교 부속농장 필지논에서 2008년 영농기간을 중심으로 논에서의 영양물질인 총인(TP), 인산성 인($PO_4-P$) 및 산화환원전위(Eh)의 변화특성을 파악함으로써, 논으로부터의 영양물질 유출제어에 관한 기초 자료를 제공하는데 있다. 이 연구는 2008년 6월부터 10월까지 필지논에서 논 표면수의 TP 와 $PO_4-P$의 농도변화와 토양의 산화환원전위(Eh)와의 관계 특성을 파악하였다. 관개기의 논에서 인은 분얼비 시기에 인성분이 시비되지 않았는데도 불구하고 분얼비 직후와 분얼비 1주일 후에 TP농도가 높게 나타났는데 이는 담수의 영향으로 논이 환원상태로 되어, 논바닥에 침전된 철이온에 흡착되어 있던 인이 철이온의 환원으로 함께 용출하기 때문이라고 생각된다. 산화환원전위(Eh)는 높아지면 산화경향을, 낮아지면 환원경향을 나타낸다. 본 연구기간 동안의 산화환원전위(Eh) 값은 비 관개기에 $201^{\sim}405$ mV로 높게 나타났고, 관개기에는 $93^{\sim}195$ mV로 낮게 나타났다. 필지논 표면수의 인농도는 분얼비 직후 1주일후까지 TP 와 $PO_4-P$ 농도는 같이 상승하다가 TP농도는 약 2주일까지 더 상승하여 2008년 최대값을 나타냈고 $PO_4-P$농도는 하강하였는데 이는 논 토양이 환원상태로 되면서 바닥에 있던 입자성 인이 논 표면으로 떠올랐기 때문으로 사료된다. 그 후에 담수가 끝나는 시점까지 농도는 낮아졌다. 강우량이 적은 관개초기에 인의 농도는 비교적 높게 나타났지만 강우량이 많은 여름에는 작물의 생장에 필요한 영양물질 섭취 등으로 인농도가 낮게 나타나 논은 인의 유출을 억제하고 있는 것으로 나타났다. 이와 같이 인의 유출특성 및 산화환원전위(Eh)의 변화에 따른 논에서의 유출부하 특성이 규명된다면, 환경부하가 적은 효과적인 물관리가 가능해 질 것으로 판단된다.

  • PDF

Recovery of Zirconium from Spent Pickling Acid through Precipitation Using BaF2 and Electrowinning in Fluoride Molten Salt (BaF2 침전 및 불화물 용융염 전해 제련을 통한 폐 산세액 내 지르코늄 회수)

  • Han, Seul Ki;Nersisyan, Hayk H.;Lee, Young Jun;Choi, Jeong Hun;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.681-687
    • /
    • 2016
  • Zirconium(Zr) nuclear fuel cladding tubes are made using a three-time pilgering and annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zr is dissolved in HF and $HNO_3$ mixed acid during the process and pickling waste acid, including dissolved Zr, is totally discarded after being neutralized. In this study, the waste acid was recycled by adding $BaF_2$, which reacted with the Zr ion involved in the waste acid; $Ba_2ZrF_8$ was subsequently precipitated due to its low solubility in water. It is very difficult to extract zirconium from the as-recovered $Ba_2ZrF_8$ because its melting temperature is $1031^{\circ}C$. Hence, we tried to recover Zr using an electrowinning process with a low temperature molten salt compound that was fabricated by adding $ZrF_4$ to $Ba_2ZrF_8$ to decrease the melting point. Change of the Zr redox potential was observed using cyclic voltammetry; the voltage change of the cell was observed by polarization and chronopotentiometry. The structure of the electrodeposited Zr was analyzed and the electrodeposition characteristics were also evaluated.

Multiple Tolerances and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus

  • Li, Xingxing;Liu, Dongliang;Wu, Zhaowei;Li, Dan;Cai, Yifei;Lu, Yao;Zhao, Xin;Xue, Huping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.615-621
    • /
    • 2020
  • Laccases are multicopper oxidases with important industrial value. In the study, a novel laccase gene (mco) in a Staphylococcus haemolyticus isolate is identified and heterologously expressed in Escherichia coli. Mco shares less than 40% of amino acid sequence identities with the other characterized laccases, exhibiting the maximal activity at pH 4.0 and 60℃ with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) as a substrate. Additionally, the Mco is tolerant to a wide range of pH, heavy metal ions and many organic solvents, and it has a high decolorization capability toward textile dyes in the absence of redox mediators. The characteristics of the Mco make this laccase potentially useful for industrial applications such as textile finishing. Based on BLASTN results, mco is found to be widely distributed in both the bacterial genome and bacterial plasmids. Its potential role in oxidative defense ability of staphylococci may contribute to the bacterial colonization and survival.

A Study on the Removal of Nitrate Nitrogens by Redox Reaction of Zinc Ball (아연볼의 산화·환원 반응을 통한 연속식 질산성질소 처리에 관한 연구)

  • Kim, Joon Hwan;Kim, Jong Hwa;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.487-494
    • /
    • 2017
  • Since nitrate nitrogen is quite stable in aqueous solution, considerable skill is required to remove it. Low concentrations of nitrate nitrogen are easily removed, while high concentrations of nitrate nitrogen are difficult to remove. This study is to show that nitrate nitrogen in the form of gaseous nitrogen can be removed by using zinc ball with a diameter of about 3mm and to test the removal characteristics of nitrate nitrogen under various reaction conditions. As a result of this study, the treatment efficiency of nitrate nitrogen by continuous treatment with zinc ball was about 80%. However, there is a problem that the wastewater must be maintained in an acidic atmosphere of about pH 2, and the treated wastewater must be neutralized and discharged.