• Title/Summary/Keyword: Recycling water of ready-mixed concrete

Search Result 18, Processing Time 0.033 seconds

Efficient Unit-Water Management Method for Stabilizing the Quality of Ready-mixed Concrete (레미콘 품질 안정화를 위한 효율적인 단위수량 관리 방안)

  • Choi, Sung-Woo;Ryu, Deug-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.327-328
    • /
    • 2021
  • In the manufacturing process of ready-mixed concrete, quantity management directly affects the workability and strength of concrete. Therefore, water quantity is the most important management factor for water quality control of ready-mixed concrete. It can be said that the number of unit water in the mix design, the water quantity due to the surface water contained in the aggregate used, and the water quantity taking into account the concentration of sludge contained in the recycling water when using the recycling water are factors that affect the quantity management of ready-mixed concrete. In this study, as a stable quality control method of ready-mixed concrete, a quantity management method by aggregate surface water and a sludge concentration management method according to the use of recycling water were proposed. Thus, we tried to suggest an efficient quantity management method for stabilizing the quality of ready-mixed concrete.

  • PDF

A Study on the Automatic Measurement of Solid Content in Recycled Water in Ready Mixed Concrete Plant (레디믹스트 콘크리트 플랜트의 회수수 농도 측정 자동화에 관한 연구)

  • Choi, Young-Cheol;Moon, Gyu-Don;Cho, Bong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.123-131
    • /
    • 2014
  • Whole amount of waste water, approximately 921.6 liter, for cleaning a ready mixed concrete truck should be used to produce concrete as a mixing water or cleaning water. Recycling water for concrete mixing contains solids, which cause decrease in slump, air and compressive strengths, so it may influence on poor concrete quality. Therefore, it has been maintained to use recycling water with less than 3 percent of solids. Since no evaluation system has been constructed to directly reflect on variability of recycling water from ready mixed concrete plants, it is necessary to develop "Automatic recycling solid measuring system" for quality controls in real time. In this research, sensors measuring waste water concentration in ultrasonic and inductance methods were developed, and automatic system using the sensors were established. The accuracy of measurement sensors developed for recycling water based on various conditions of concentration was proved, and application limits were evaluated. Also, concentration of recycling water using sensors developed from ready mixed concrete plant was measured, and curing method verified the accuracy of the sensors. Moreover, measurement sensors for recycling water in various locations were installed to evaluate the effects on measuring method and spots. The automatic measuring system for recycling water concentration, which is developed in the research, will contribute to improve concrete quality safety through reliable solids maintenance.

Study on liquid carbonation using the recycling water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화에 관한 연구)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Choi, Chang-Sik;Hong, Bum-Ui;Park, Jin-Won;Lee, Dae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.770-778
    • /
    • 2013
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. We recycled the recycling water of ready-mixed concrete, one of construction waste for use source of carbonate ion. A supernatant separated from the recycling water of ready-mixed concrete, as a result of ICP analysis of a cation, $Ca^{2+}$ was contained up to 1100 ppm. We used MEA as a $CO_2$ absorbent for the liquid carbonation. A precipitate $CaCO_3$ was produced at more than MEA 20 wt%. The precipitate $CaCO_3$ as a final product was separated and dried. The result of XRD was confirmed the generation of $CaCO_3$ to calcite structure.

Utilization of Ready-mixed Concrete Recycling Water Mixed with Hot-rolled Slag Containing C12A7 and Application Characteristics of Cement Mortar (C12A7을 함유한 열연슬래그를 혼입한 레미콘 회수수 활용 및 시멘트 모르타르의 적용 특성)

  • Kim, Young-Yeop;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.92-99
    • /
    • 2021
  • CaO-based by-products composed of CaO, SO3, Al2O3, etc. are generally used as raw materials for CaO compounds. When applied to the recovered water of ready-mixed concrete, the hydration reaction of the powder material is accelerated and concrete performance can be improved. In this study, activated sludge was prepared to apply to the recovered water of ready-mixed concrete by mixing CaO-based hot-rolled slag(C12A7) in the recycling water of ready-m ixed concrete. Cem ent paste setting time and mortar compressive strength performance tests confirmed the effect on the hydration reaction. Therefore, the possibility of concrete application using activated sludge was confirmed.

Study on optimization of liquid carbonation pilot plant (system) using sludge water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화 Pilot plant(System) 최적화에 관한 연구)

  • Kim, Jae Gang;Shin, Jae Ran;Kim, Hae Gi;Kang, Ho Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • In this study, recycling sludge water of Ready-mixed concrete, and was carried out to optimize the system for recycling of the $CO_2$. The most important process in the liquid phase using a carbonation reaction can be recovered ready-mixed concrete is a process for the $Ca^{2+}$ release. $Ca^{2+}$ concentration of the experiment relative to the pH being lowered by the acidic substance during elution was performed. $CO_2$ was trapped in the MEA solution using a generator flue gas. In ready-mixed concrete can be synthesized $CaCO_3$ up to 11kg/1ton. The resulting $CaCO_3$ analysis results show that it is possible to use paper industry.

Strength Properties of Non-cement Matrix by Using Recycled Aggregates and Sludge from Ready-Mixed Concrete (레미콘의 슬러지 고형분과 회수골재를 사용한 무시멘트 경화체의 강도특성)

  • Ryu, Dong-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.477-482
    • /
    • 2016
  • This study investigates the expressions characteristics of compression strength depending on the condition of fresh concrete and cured concrete by producing Non-cement mortar and concrete only with solidified sludge in the dehydrated cake form, recycled concrete and premixed materials(BS, FA) in order to actively use remicon recycling water as resources, rather than as construction waste material. After treating wastewater of pH 12.5 or more with alkali activator and after promoting BS hydration reaction, the amount of BS inflow was found to be increased and compression strength was increased accordingly: these results coincide with the analysis results of TG-DTA and SEM.

Characteristics of Concrete Using Ready-Mixed Concrete Recycled Water Mixed with Industrial By-Product Desulfurization Gypsum (산업부산물 탈황석고 혼입 레디믹스트콘크리트 회수수를 이용한 콘크리트의 특성)

  • Kim, Young-Yeop;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.395-403
    • /
    • 2020
  • CaO-based by-product, which consist of CaO, SO3, Al2O3 and so on, has being used to raw materials of CaO compound. When It was applied to recycling water of remicon, concrete performance can be enhanced because hydration reaction of powder material is accelerated. In this study, activated-sludge, which was putted desulfurization gypsum of CaO-based in recycling water, was manufactured to verify effect of them, and then they was investigated by characteristics of redy-mixde concrete. As a result of concrete tests, it was confirmed that there is no problem of strength or drying shrinkage while ensuring workability. Therefore, the possibility of specific application using activated sludge was confirmed.

An Experimental Study on the Reuse of Recycling Water of Reacy Mixed Concrete such as Concrete Water(II) - A Case Study on the Concrete - (콘크리트용 용수로써 레미콘 회수수의 재활용에 관한 연구(II) -콘크리트 적용실험을 중심으로-)

  • 김기철;윤기원;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.105-110
    • /
    • 1994
  • This study is applying to the concrete with the variation of the variation of the sludge contents, to analyze the properties of the fresh concrete and the mechanical properties of hardened concrete give the reference data of actual ready mixed concrete. To the result of this study in the condition of W/C 60%. As a result of this experiment and considering the drying shrinkage, it is thought that in using sludge, the less amount of sludge than 4% can produce of good quality concrete.

  • PDF

The Fluidity and Compressive Strength Properties of Lightweight Mortar Using Recycling Water for Pre-wetting of Artificial Lightweight Aggregate (인공경량골재 Pre-wetting수로 회수수를 적용한 경량모르타르의 유동성 및 압축강도 특성)

  • Oh, Tae-Gue;Bae, sung-ho;Lee, dong-joo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.153-154
    • /
    • 2019
  • In this study, the fluidity and compressive strength of lightweight mortar using recycling water for pre-wetting of artificial lightweight aggregate were compared and analyzed to maximize the utilization of the recycling water, which is a by-product of the Ready-Mixed Concrete industry. For this purpose, the pre-wetting water was replaced with recycling water at the ratio of 0, 2.5, 5, 7.5 and 10%.

  • PDF

Practical Use of Activated Recycling Water Sludge for Admixture of Concrete (활성도를 부여한 회수수 슬러지의 콘크리트 혼화재 활용)

  • Kim, Ho-Su;Baek, Chul-Woo;Park, Cho-Bum;Jeun, Jun-Young;Ryu, Deug-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.777-780
    • /
    • 2008
  • There were some attempt to reuse water with sludge combinative water for ready mixed concrete. But recycling water consist of cement, aggregate and chemical admixture. So it caused deterioration of concrete. The object of this study was to search for recycling method of the recycling water sludge as mineral admixture. This experiment dealed with the effect of $2.5{\sim}12.5$% range of the recycling sludge which can be used for admixture binder(BFS, FA, BFS+FA) on properties of activated recycling water sludge for admixture of concrete. As a result, Although the slump levels reduced and air contents increased as sludge replacement levels increased, it didn't change highly. The compression strength of concrete slightly increased with an increasing amount of recycling water sludge replacement.

  • PDF