• Title/Summary/Keyword: Recycling substrate

Search Result 106, Processing Time 0.017 seconds

Assessment of Soil Properties and Growth of Organically Cultivated Cucumber (Cucumis sativus L.) with Applications of Livestock Manure Compost and Fish Meal Liquid Fertilizer (가축분 퇴비와 어분 액비 시용이 유기농 오이 생육 및 토양환경에 미치는 영향)

  • An, Nan-Hee;Cho, Jung-Rai;Lee, Sang-min;Nam, Hong-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.23-31
    • /
    • 2018
  • This study was carried out to investigate the effects of livestock manure compost and fish-meal liquid fertilizer on the growth of cucumber and the soil properties for the stable production of organic cucumber. Cucumber was transplanted in greenhouse on the $6^{th}$ of April in 2017, and this experiment contained five treatments: livestock manure compost 100% (LC 100%), livestock manure compost 50% + fish-meal liquid fertilizer 50% (LC50 + LF50), livestock manure compost 50% (LC50), chemical fertilizer (NPK), and no fertilizer (NF). As a result, it was shown that soil chemical properties of LC50 + LF50 plot is not different from that of LC100 plot except for the EC content, but soil chemical properties of LC50 + LF50 plot is statistically significantly different from that of NPK plot except for pH. As a result of evaluating the functional diversity of soil microbial communities using Biolog system, the substrate richness (S) and the diversity index (H) were the highest in LC50 + LF50 plot. As a result of comparing the cucumber growth and yield, it was found that there was no statistically significant difference between the plant height and the fresh weight of LC100, LC50 + LF50, and NPK plot, but the plant height and the fresh weight of LC100, LC50 + LF50, and NPK plot were different from that of LC50 and NF plot. The yield of cucumber was the highest in NPK plot r(7,397 kg/10a), but there was no statistically significant difference in the yield of cucumber between NPK plot and LC100, LC50 + LF50 plot. The above-described results suggested that the livestock manure compost and fish meal liquid fertilizer can be used for organic cucumber production under greenhouse condition.

Development of New Mushroom Substrate of Pleurotus Ostreatus Using Foodwaste and Wormcast (남은 음식물과 지렁이 분변토를 이용한 느타리버섯의 대체 배지개발)

  • Park, Jang-Woo;Park, Ki-Byung;Lee, Eun Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.75-85
    • /
    • 2012
  • This study was investigated to develop an alternative medium for the cultivation of oyster mushrooms. The cultivation characteristics for major cultivated varieties of oyster mushrooms were campared with the food waste medium. In addition, water control & a gap formation of food waste is being pointed out as a problem of the medium material. Therefore, certain amounts of earthworm casting were supplied to the food waste medium to overcome the water and compaction phenomenon. This study investigated the use of the total 6 cultivars of oyster mushrooms, the Suhan(PL.1), Chiak No. 5(PL.2), Chiak No. 7(PL.3), Samgu No. 5(PL.4), Samgu No. 8(PL.5), Jangan No. 5(PL.6). In terms of medium, the optimum growth of the mycelium of the oyster mushroom was observed in the beet pulp medium but in food waste, the mycelium's growth was observed as insufficient in the bulk of cultivars. The Jangan No. 5(PL.6) was superior to other cultivars relative to the mycelium's growth. The optimum concentration of earthworm casting added the foodwaste medium was 30%. When Jangan No. 5(PL.6) was incubated in the foodwaste meidum containing 30% earthworm casting, the early days to germination were long, almost double the amount of time than that of the beet pulp medium. However, it was found that the fruit body size was larger than that of the beet pulp by up to 20.5%, and the length of the fruit body was up to 6.2% longer than that of the beet plup. The total yields increased by 60.5%. The analysis results of the oyster mushroom's nutritional contents cultured using the food waste medium, shows that the protein, vitamin A and vitamin E increased 70.6%, 2.4%, 0.8% respectively, the fat decreased by 12.6% and the oleic acid increased in a very small amount compared to that of the beet pulp medium.

Molecular Cloning and Sequence Analysis of Coelomic Cytolytic Factor-like Gene from the Midgut of the Earthworm, Eisenia Andrei (줄지렁이 중장에서 분리한 Coelomic cytolytic factor-유사 유전자의 클로닝 및 염기서열 분석에 관한 연구)

  • Baek, Nam Sook;Lee, Myung-Sik;Park, Sang-Kil;Kim, Dae-hwan;Tak, Eun-Sik;Ahn, Chi-Hyun;Sun, Zhenjun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.64-73
    • /
    • 2008
  • The cDNA of CCF (coelomic cytolytic factor)-like gene (EC 3.2.1.16), a kind of glycosyl hydorlase, was isolated and cloned from the midgut of the earthworm Eisenia anderi. The size of nucleotide sequence appeared to be 1,152 bp and its predicted coding region was composed of 384 amino acid residues including the initiation methionine. The 17 residues at N-terminal end in the deduced amino acid sequence were regarded to be a signal peptide. Based on the amino acid sequence analysis, it appeared that this CCF-like protein could belong to glycosyl hydrolase family 16 (GHF16) and showed a high sequence homology of about 79~99% with CCF and CCF-like proteins from other earthworm species. The CCFs and CCF-like proteins from various earthworm species exhibited a 100% homology in the polysacchride-binding motif and glucanase motif. It has been reported that the CCFs isolated from E. fedita appeared to show a broader pattern recognition specificity than those from other earthworm species because this species resides in decaying organic matter showing very high microbial activity, implying that CCF-like protein isolated in this study from E. andrei might exhibit a broad substrate specificity that is a useful characteristic for industrial application. A phylogenetic analysis using the deduced amino acid sequences of CCF-related proteins through the BLASTX revealed that GHF16 families could be divided into three groups of metazoa, viriplantae and eubacteria subfamily. Subsequently the CCF-related proteins of metazoa subfamily could clearly be subgroup into lophotrochozoan and edysozoan type including a deuterostome origin. Further understanding of the biological properties of E. andrei CCF-like protein should be addressed to regulate the ${\beta}$-D-glucan hydrolysis and production for the industrial uses.

  • PDF

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

Monitoring of Feed-Nutritional Components, Toxic Heavy Metals and Pesticide Residues in Mushroom Substrates According to Bottle Type and Vinyl Bag Type Cultivation (버섯의 봉지재배 및 병재배 시 재배단계별 배지의 사료영양적 성분, 독성중금속 및 잔류농약 모니터링)

  • Kim, Y.I.;Bae, J.S.;Huh, J.W.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.67-78
    • /
    • 2007
  • This study was carried out to monitor feed-nutritional components, toxic heavy metals (Cd, Pb and As) and pesticide residues through three cultivation stages (1st initial culture stage, 2nd mycelial growth stage, and 3rd fruit body-harvested stage) of king oyster mushroom (Pleurotus eryngii) produced by bottle type cultivation and oyster mushroom (Pleurotus osteratus) produced by vinyl bag type cultivation. For both cultivation types, compared with the initial culture, the weight reduction rate in spent mushroom substrates (SMS) after fruit body harvest was 29% for total wet mass, 21~25% for dry and organic matters and 19 ~22% for neutral detergent fiber. Two thirds to 3/4 of organic matter degraded and utilized by mycelia and fruit bodies was originated from fiber, of which the primary source (50~70%) was hemicellulose. The effect of mycelial growth stage on chemical compositional change in culture was little (P>0.05) for bottle type cultivation of king oyster mushroom but considerable (P<0.05) for vinyl type cultivation of oyster mushroom. Culture nutrients uptake by fruit bodies was very active for the bottle type cultivation. Compared with SMS, harvested fruit bodies (mushrooms) contained higher (P<0.05) crude protein, non-fibrous carbohydrate, and crude ash and lower (P<0.05) neutral detergent fiber. Regardless of stages, no culture samples were contaminated with toxic heavy metals and pesticide residues. In conclusion, the increase of fiber (neutral and acid detergent fibers) and indigestible protein contents and the decrease of true protein content in SMS indicated that the feed-nutritional value of SMS was significantly reduced compared with that of the initial culture and they were safe from toxic heavy metals and pesticide residues.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.