• Title/Summary/Keyword: Recycling industries

Search Result 145, Processing Time 0.025 seconds

Problem and Policy of Social Enterprises (사회적 기업 현황과 발전 과제)

  • Park, Keun-Soo
    • The Journal of Information Technology
    • /
    • v.10 no.2
    • /
    • pp.65-80
    • /
    • 2007
  • The development of social enterprise is rapidly emerging trend in Europe. Social enterprises are businesses with a social purpose working. There is no single legal model for social enterprise. There are many social enterprises operating in a wide range of industries from farmers markets and recycling companies to transport providers and childcare. Common characteristics of Social enterprise are Enterprise Orientation, Social aims, Social ownership.

  • PDF

Analysis for Valuable Materials Disassembled from 40- and 42-inched Waste LCDs (Liquid Crystal Displays) (폐 중형 (40인치와 42인치) LCD (Liquid Crystal Display) 제품 해체 후 분리된 유가자원에 대한 분석)

  • Park, Hun-Su;Kim, Yong;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.42-48
    • /
    • 2016
  • Although the generation of waste flat panel displays in Korea is expected to exceed one million sets in 2016, a comprehensive recycling technology has not yet been developed for effective recovery of valuable materials from the wastes, rendering to outshine the national prestige as a global leader in display industries. The overall aim of this study was to analyze the statistical data of various valuable materials and their ratio after dismantling 40-inch and 42-inch sized waste LCDs. The analysis results showed that plastic portion of the wastes was about 22% and the portion of PCB (Print Circuit Board) part was about 9% by weight whereas panel part was about 34% and leftovers including metals totalled about 35% by weight. Based on the analytical results, a higher value recycling process could be proposed with advanced material separation techniques.

Recycling of rayon industry effluent for the recovery and separation of Zn/Ca using Thiophosphinic extractant

  • Jha, M.K.;Kumar, V.;Bagchi, D.;Singh, R.J.;Lee, Jae-Chun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.78-85
    • /
    • 2006
  • In textile industries, waste effluent containing zinc is generated during the manufacture of rayon yarn from the wood pulp or cotton linters. Due to the strict environmental regulations and the presence of toxic metallic and other constituents, the discharge of industrial effluents in the sewage or disposal of solid sludge as landfill is restricted. Before recycling of zinc as zinc sulphate solution to the spinning-bath of the rayon manufacturing plant the zinc sulphate solution must be free from calcium, which is deleterious to the process as gypsum precipitates with the increase in concentration and forms scale in the bath. In the present work an attempt has been made to develop a process following solvent extraction technique using thiophosphinic extractants, Cyanex 272 and 302 modified with isodecanol and diluted in kerosene to recover zinc from rayon effluent. Various process parameters viz. extraction of zinc from different concentration of solution, distribution ratio, selective extraction, O/A ratio on extraction and stripping from the loaded organic, complex formation in the organic phase etc. have been studied to see the feasibility of the process. The extractant Cyanex 302 has been found selective for the recovery of 99.99% of zinc from the effluent above equilibrium pH 3.4 maintaining the O/A ratio of 1/30 leaving all the calcium in the raffinate. It selectively extracted zinc in the form of complex $[R_{2}Zn.3RH]_{org}$ and retained all the calcium in the aqueous raffinate. The zinc from the loaded Cyanex 302 can be stripped with 10% sulphuric acid at even O/A ratio of 10 without affecting the stripping efficiency. The stripped solution thus obtained could be recycled in the spinning bath of the rayon plant. The raffinate obtained after the recovery of zinc could be disposed safely without affacting environment.

  • PDF

Workers' Exposure to Indium Compounds at the Electronics Industry in Republic of Korea

  • Yi, Gwangyong;Jeong, Jeeyeon;Bae, Yasung;Shin, Jungah;Ma, Hyelan;Lee, Naroo;Park, Seung-Hyun;Park, Dooyong
    • Safety and Health at Work
    • /
    • v.12 no.2
    • /
    • pp.238-243
    • /
    • 2021
  • Objectives: The aim of this study was to provide baseline data for the assessment of exposure to indium and to prevent adverse health effects among workers engaged in the electronics and related industries in Republic of Korea. Methods: Total (n = 369) and respirable (n = 384) indium concentrations were monitored using personal air sampling in workers at the following 19 workplaces: six sputtering target manufacturing companies, four manufacturing companies of panel displays, two companies engaged in cleaning of sputtering components, two companies dedicated to the cleaning of sputtering target, and five indium recycling companies. Results: The level of exposure to total indium ranged from 0.9 to 609.3 ㎍/m3 for the sputtering target companies; from 0.2 to 2,782.0 ㎍/m3 for the panel display companies and from 0.5 to 2,089.9 ㎍/m3 for the indium recycling companies. The level of exposure to respirable indium was in the range of 0.02 to 448.6 ㎍/m3 for the sputtering target companies; 0.01 to 419.5 ㎍/m3 for the panel display companies; and 0.5 to 436.3 ㎍/m3 for the indium recycling companies. The indium recycling companies had the most samples exceeding the exposure standard for indium, followed by sputtering target companies and panel display companies. Conclusions: The main finding from this exposure assessment is that many workers who handle indium compounds in the electronics industry are exposed to indium levels that exceed the exposure standards for indium. Hence, it is necessary to continuously monitor the indium exposure of this workforce and take measures to reduce its exposure levels.

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin (구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.56-65
    • /
    • 2022
  • Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.

Leaching of Copper and Other Metal Impurities from a Si-Sludge Using Waste Copper Nitrate Solution (실리콘 슬러지로부터 폐질산구리용액을 이용한 구리 및 금속불순물의 침출)

  • Jun, Minji;Srivastava, Rajiv Ranjan;Lee, Jae-chun;Jeong, Jinki
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.11-19
    • /
    • 2016
  • A fundamental study to recycle a Si-Sludge and waste copper nitrate solution acid solution generated by domestic electronic industries was carried out. The waste copper nitrate solution was used as the lixiviant to leach the metals like Cu, Ca, Fe, etc. from the sludge leaving Si in the residues. The effect of reaction temperature, time and pup density on the metals leaching from the sludge was investigated. To enhance the extractability of Fe, the effect of HCl, $HNO_3$ and $H_2O_2$ introduced additionally during the leaching was also examined. Considering the leaching efficiency of Fe along with Cu, the leaching conditions comprising of 200 ~ 225 g/L pulp density and $90^{\circ}C$ temperature for 30 min were optimized. Under this condition, 98.27 ~ 99.17% Cu could be dissolved in the leach liquor with the obtained purity of Si in the residues as 98.69 ~ 98.86 %. The study revealed that the leaching of Cu contained in the Si-Sludge with the waste copper nitrate solution is a plausible approach by which the obtained leach liquor can further be treated suitably to recover Cu as the high pure value-added products.

Bio-dissolution of waste of lithium battery industries using mixed acidophilic microorganisms isolated from Dalsung mine (달성 광산(鑛山)에서 채취(採取)한 혼합(混合) 호산성 균주를 이용(利用)한 폐리튬 밧데리의 바이오 침출(浸出))

  • Mishra, Debaraj;Kim, Dong-Jin;Ahn, Jong-Gwan;Ralph, David E.
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.30-35
    • /
    • 2008
  • Mixed acidophilic bacteria were approached for leaching of cobalt and lithium from wastes of lithium ion battery industries. The growth substrates for the mixed mesophilic bacteria are elemental sulfur and ferrous ion. Bioleaching of the metal was due to the protonic action of sulfate ion on the metals present in the waste. It was investigated that bioleaching of cobalt was faster than lithium. Bacterial action could leach out about 80 % of cobalt and 20 % of lithium from the solid wastes within 12 days of the experimental period. Higher solid/liquid ratio was found to be detrimental for bacterial growth due to the toxic nature of the metals. At high elemental sulfur concentration, the sulfur powder was observed to be in undissolved form and hence the leaching rate also decreased with increase of sulfur amount.

Trend on the Metallurgical Technologies for the Platinum Group Metal by the Patent Analysis (특허(特許)로 본 백금족(白金族) 금속(金屬)의 제련기술(製鍊技術) 동향(動向))

  • Shin, Shun-Myung;Park, Jin-Tae;Lee, Jae-Chun;Son, Jeong-Soo;Yoon, Ho-Sung;Kim, Min-Seuk
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.72-81
    • /
    • 2009
  • The demand for platinum group metals for various advanced industries has been growing due to their excellent physical and chemical properties. Since the deposit of platinum minerals are restricted to few countries, their recovery from various secondary resources has becomes an important issue to related industries for keeping the supply reliably. In this paper, patents on the metallurgical technologies for the platinum group metals were analyzed. The search of patent was limited to the open patents of USA (US), European Union (EP), Japan (IP), and Korea (KR) from 1986 to 2006. Patents were surveyed using key-words searching and selected by filtering criteria. The trend of patents was analyzed by the years, countries, companies, and technologies.

A Study of How to Improve of Building Waste Management Systems Using by 'BIM / GIS' (BIM/GIS을 활용한 건설폐기물관리시스템 개선방안에 대한 연구)

  • Kim, Hye-Mi;Son, Byeung-Hun;Kim, Young-Chan;Hong, Won-Hwa
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.53-62
    • /
    • 2011
  • Recently environmental pollution and resource depletion have been rapidly progressing in the world. Construction Industries discharge tones of wastes and consumes heavy resource as compared with the production activities of other industries, so it is the main reason of increasing of the Earth's environment. In Korea, as people become aware of the need of technical and institutional infrastructure for the recycling of construction wastes, they manage Allbraro system which is Total Management System in the wastes. Therefore, they promote the handling of standardized information, processing construction waste of transparency procure and promotion of the efficiency of task about the disposal of occurrence and movement of real-time construction waste. However, objective information for dismantling building did not construct in the organization of the system, so the emission of system randomly produces and discharges information of the waste. Because of that reasons, the exact value of waste abandonment is difficult to measure and recycling after waste disposal has the limit point. Therefore, in this study, advantages and disadvantages of the existing waste management system are analyzed, and we improved solution of construction building and environment of the city when BIM / GIS are utilized.

Synthesis of Cement Raw Materials by Melting of Industiral Wastes(II) (폐기물의 용융처리에 의한 시멘트 원료의 합성(II))

  • Hwang, Y.;Sohn, Y. U.;Chung, H. S.;Lee, H. K.;Park, H. S.
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.29-34
    • /
    • 1997
  • The feasibility of using the industrial inorganic waste materials such as l~mestone sludge. Soundly sand. coal fly 'ash, and chemical glasses as a raw material for cement clinker by melting treatmeut was iovestigated. The slag wh~ch is obtained from thc melts of the mixtnres of waste materials is composed of P-C,S(ZCaO - SIOJ and C,AS(ZCaO . AI,O, . SiO,) phases. The effect of melting tempcrabre, coaling condition and CIS ratio on the fo~mation of P-C,S phasc was examed. In order to obtain thc P-CiS phase which is useful in thc utilhtion as a clinkcr malcrid, it B found that sudl considerations as low melting temperature as possible of the wastc mixhire, quenching the melts and law CIS ratio of the mlxhlre are necessary.

  • PDF