• Title/Summary/Keyword: Recycling Facilities

Search Result 243, Processing Time 0.02 seconds

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Fig Manure and Food Waste(I): (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(I): 현장조사 결과 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.91-100
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 13 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of bio-gasification treatment. Consequently, major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas and pretreatment of hydrogen sulfide.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power Generation and Stream - Results of the Field Investigation (바이오가스 이용 기술지침 마련을 위한 연구(I) - 현장조사 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to biogas utilization treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 11 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of biogas utilization. Consequently, Major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas, pretreatment of hydrogen sulfide, operation of power generation and steam. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), research the facilities problem through field investigation.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Field Investigation (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(I): 도시가스 및 수송용 - 현장조사 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.

A Study on the Construction of Waste Incineration Facility by Pyrolysis Type in Iksan City (익산시의 열분해방식 폐기물 소각시설 건설에 관한 연구)

  • 육찬남
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.60-66
    • /
    • 2002
  • Iksan city is planning to construct a waste incinerator on the site of about $110,000\textrm{m}^2$ in size that will be selected from a public bid(Oct.~Nov.2002)in the wake of expiration by June 2003 of use for Hamyeol fill-up ground. Science it has usually been difficult to find sites for filling-up or incinerating facilities owing to NIMBY phenomenon, it is badly requested to employ up-to-date technology for processing wastes without environmental pollution. The conflicts between the administrative authorities and community people with regard to construction of incineration facilities, fill-up ground and facilities for waste processing or recycling are not the matters of just today but are increasingly deepening and spreading countrywide. There seems to be no prospect for these conflicts to be amicably settled through dialogues. They rather become a social disease inflicting the whole country like an epidemic. It is therefore believed to be necessary to introduce measures to design and build environment-friendly facilities that may be accepted by residents as not abominable ones but be used as amusing place while they watch the daily operation of them as watchdogs. Iksan city's plan to construct environment-friendly waste incineration facilities of pyrolysis type without chimney has undergone the process of public hearings and explanatory gatherings from every class of Iksan citizens to get consensus but is still delayed due mainly to be the failure of inducing foreign investments. Pyrolysis technology has two advantages ; first, environment-friendly due to less emission of second pollutants ; second, production of by-products highly valuable as resources. It Is known that Germany has recently begun installation and operation of pyrolysis facility urban wastes, an evidence indicating that pyrolysis method will be widely applied to cope with the tightened regulation to preserve environment worldwide.

Management and Recycling of the Animal Fat Residue (동물성 지방의 재활용 방안에 관한 연구)

  • Kim, Nam-Cheon;Lee, Si-Jin;Shin, Hang-Sik;Song, Young-Chae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.2
    • /
    • pp.287-298
    • /
    • 1993
  • In this study, generation characteristics and distribution situation of the animal fat residue were investigated to identify it's management problems and to propose alternatives for the recycling and final disposal. Generation sources were the meat distribution net-work including about 170 slaughterhouses, 280 meat-packing plants, thousands of meat shops and restaurants etc. The daily total amount of the animal fat residue is about 700 ton/day. More than 60% of the generation sources were concentrated in Seoul metropolitan area. The residue was collected by about 300 men using old-fashioned devices like handcarts, bike and auto bike, transported to the recycling plants by about 60 collection agencies. The residue was processed to produce by-products such as grease, tallow, animal feed ingredient in the recycling plants. At present, however, a great number of unlicensed, and mostly small rendering processors without having pollution control facilities do the unlawful business. These small, old fashioned and unorganized businesses are creating environmental problems by disposing the waste in improper ways such as open burning and dump. Improvement of the distribution network, the large-scale plants, and the estabilishing proper infrastructures were suggested to overcome the problems for the sound fat residues reprocessing industry.

  • PDF

Studies on Expanding Application for the Recycling of Coal Ash in Domestic (국내 석탄재 재활용 확대 방안 연구)

  • Cho, Hanna;Maeng, Jun-Ho;Kim, Eun-young
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.563-573
    • /
    • 2017
  • Coal ash is generated from coal-fired thermal power plants every year. The remaining quantity of coal ash ends up in the landfills except for the recycled portion, and the existing ash pond capacity is limited almost. Currently, the difficulties are faced in building a new ash treatment plant because of the concerns about the environmental impacts of landfills at individual plant facilities. In terms of minimizing the environmental impact, the recycling and effective uses of coal ash are recognized as urgent issues to be challenged. Accordingly, this study examines the obstacles in expanding the recycling of the coal ash in South Korea and proposes solutions based on the case study analysis. The analysis results are as follows: 1) specific recycling guidelines and standards are required to be established in accordance with the contact medium (soil, ground water, surface water and sea water) and the chemical. 2) by providing the recognition environmentally safe in recycling the coal ash, transparency in establishing the planning stages and active communication with the community through promotion and research are essentially needed. 3) practical support system is required to encourage the power plant companies to use the coal ash as beneficial use.

Environmental Impact Assessment of EPS Box for Fresh Food in Korea and Europe (한국과 유럽의 신선식품용 EPS박스에 대한 전과정 환경영향평가)

  • SY, Kim;CHAROENSRI, KORAKOT;YJ, Shin;HJ, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.201-210
    • /
    • 2022
  • Expanded polystyrene (EPS) is the most commonly used fresh food refrigeration insulation in Korea and Europe. Moreover, as the use of disposable packaging materials has increased significantly along with non-face-to-face delivery services since the COVID-19 crisis, social issues related to waste disposal are also being raised. Therefore, in this study, the life cycle of EPS boxes for fresh food is focused on the factors that have a large difference between incineration and landfill including recycling in Europe and Korea in the disposal process after use, and raw materials and energy in the manufacturing process, which account for a large portion of the environmental impact value. We tried to compare the environmental impact of evaluation. Overall, the raw material production stage, box manufacturing stage, and packaging stage have similar processes in Europe and Korea, but unlike Europe, Korea, which lacks landfills and incineration facilities, has focused on expanding the recycling rate. It was necessary to do an environmental impact assessment. Data affecting the environment were derived based on 2019 and 2020 data for Korea and 2017 and 2020 data for Europe. In order to predict the future environmental impact assessment, assumptions about the disposal rate in 2025 and 2030 were introduced and evaluated. As a result of this study, it was found that the raw material production stage of EPS boxes, which have similar processes in both Korea and Europe, has the greatest effect on the global warming effect of Korean EPS boxes. However, Korea, which has a relatively high recycling rate in the disposal process compared to incineration and landfill, showed better environmental performance than Europe in most impact indicators except freshwater eutrophication. In particular, Korea has increased the overall recycling rate compared to Europe by replacing various recyclable materials such as building materials and sundries with XPS (extruded polystyrene) recycled materials. In conclusion, it was found that increasing the recycling rate rather than incinerating and landfilling EPS boxes for fresh food in the domestic EPS industry has relatively less environmental load compared to Europe.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

Volume Estimation Method for Greenhouse Rainwater Tank (온실 빗물 저수조의 용량산정 방법)

  • Seo, Chan Joo;Koo, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Due to the temporal variation of inflow/outflow, the water tank is needed. For the calculation of water tank capacity, the absolute difference between cumulative amounts of supply(e.g., rainfall) and demand(e.g.,watering) is used. No matter the (-) and (+) the absolute maximum capacity of the subtraction is calculated as the capacity. In this paper, using rainfall and watering of greenhouse facilities, it is proved that the non-linear supply or demand can be applied, and it is proved also that the greater non-linear variation case. And as the time interval for monitoring is decreased, the basin or tank volume are increased, with approximately 10 days as the critical monitoring interval for the annual natural rainfall event.

A Research of Bottom Ash as a Lihgtweight Vegetation Block to Take Advantage of the Mixing Ratio (Bottom Ash를 식생블록으로 활용하기 위한 배합비 연구)

  • Moon, Jong-Wook;Oh, Jung-Keun;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.125-129
    • /
    • 2012
  • With the development of the industry, such as homes and industries of electric energy usage and thereby increase the supply of electrical energy for power generation facilities were also increased. Among them an increase in thermal power plants, such as Bottom Ash was accompanied by an increase in industrial waste. If fly ash is recycled, some ten thousand Fly Ash and Bottom Ash Landfill, the recycling rate is low in most. In this study, in order to resolve the problem of fly ash recycling Bottom Ash to take advantage of low physical and chemical characteristics were analyzed. Evaluation of Physical Properties of Bottom Ash In addition, through the evaluation of functional properties of additives chogyeol condensation of 1 hour or more, within 3 hours of closing, Flow has more than 190mm of wheel load resistance value is less than 3mm flooring developed to study the subsequent emphasis on the Properties is based. Through these studies by developing a functional flooring help with the problem of resource depletion, and losses due to reclamation and pollution is to prevent.