• Title/Summary/Keyword: Recycling Architecture

Search Result 165, Processing Time 0.024 seconds

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.

The Psychological Relaxation Effects of College Students in Location Targeting Seonyudo Park in Autumn (가을철 선유도공원의 주제공간이 대학생들의 심리적 안정에 미치는 영향)

  • Yoon, Yong-Han;Oh, Deuk-Kyun;Kim, Jeong-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.2
    • /
    • pp.13-22
    • /
    • 2015
  • The study discovers mood state and enhancement effect of users by scenery of location targeting Seonyudo Park; where is widely recognized as the representative recycling environmental park as well as theme experience space and scenery admiration in Korea. Also, the influence level of park and thematic space upon wellness was researched for future park design and its base data. As a result of semantic differential(SD), the most items showed low point in positive way when people admiring the scenery in Seonyudo. Also, a subject experienced differently depending on each inside scenery element of the park. As a result of profile of mood states(POMS), a tension and anxiety points were shown in order of Urban (7.78) > Water Purification Basin(3.33) > Gardens of Water Plants(2.11) > Garden of Green Pillar(2.00) > Garden of Time (0.89). The depression points were shown in order of Urban(4.94) > Water Purification Basin(3.50) > Garden of Green Pillar(2.94) > Garden of Time(1.61) > Gardens of Water Plants(1.38). The anger and hostility points were shown in order of Urban(4.22) > Water Purification Basin(3.33) > Garden of Green Pillar(2.22) > Garden of Time(1.39) > Gardens of Water Plants(1.11). The fatigue points were shown in order of Urban(6.5) > Water Purification Basin(3.39) > Garden of Green Pillar(2.78) > Garden of Time(2.28) > Gardens of Water Plants (2.06). The vigor points were shown in order of Gardens of Water Plants(11.39) > Garden of Time(11.00) > Garden of Green Pillar(8.39) > Water Purification Basin(7.77) > Urban(5.28). Also, as a result of statistics analysis, difference value of scenery type is significant. The result of total emotional disturbance(TED) was analyzed in order of Urban(24.5) > Water Purification Basin(9.5) > Garden of Green Pillar(4.67) > Garden of Time(-1.39) > Gardens of Water Plants(-1.22).

Thermal Conductivity and Pore Characteristics of Low-Temperature Sintered Lightweight Aggregates Mode from Waste Glass and Bottom Ash (바텀애쉬와 폐유리를 사용하여 제조한 저온소성 경량골재의 열전도율과 기공특성)

  • Lee, Han-Baek;Ji, Suk-Won;Seo, Chee-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.851-858
    • /
    • 2010
  • In this study, waste glass and bottom ash were used as basic materials in order to secure a recycling technology of by-products which was mostly discarded and reclaimed. In addition, because softening point of waste glass is less than $700^{\circ}C$ and bottom ash includes combustible material, it was possible to manufacture low-temperature sintering lightweight aggregates for energy saving at $800{\sim}900^{\circ}C$ that it is as much as 20~30% lower than sintering temperature of existing lightweight aggregates. Thermal conductivity of newly-developed lightweight aggregates was 0.056~0.105W/m. K and its porosity was 40.36~84.89%. A coefficient of correlation between thermal conductivity and porosity was -0.97, it showed very high negative correlationship. With this, we were able to verify that porosity is key factor to affect thermal conductivity. Microstructure of lightweight aggregates by $CaCO_3$ content and replacement ratio of bottom ash in the variation of temperature were that $CaCO_3$ content increased along with pore size while replacement ratio of bottom ash increased as pore size decreased. Specially, most pores were open pore instead of closed pore of globular shape when replacement ratio of bottom ash was 30%, and pore size was small about 1/10~1/5 as compared with case in bottom ash 0~20%. In addition, open pore shapes were remarkably more irregular form of open pore in $900^{\circ}C$ than $700^{\circ}C$ or $800^{\circ}C$ when replacement ratio of bottom ash was 30%. We reasoned hereby that these results will influence on absorption increase, strength and thermal conductivity decrease of lightweight aggregates.

Compare Physicochemical Properties of Topsoil from Forest Ecosystems Damage patterns (산림생태계 훼손 유형별 표토의 이화학적 특성 비교)

  • Kim, Won-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.923-928
    • /
    • 2015
  • This study was carried out to evaluate the physicochemical properties of different types of topsoil in forest ecosystems by damage pattern and analyse the possibility of using the topsoil as a planting ground construction material. There were 72 samples from 36 sites of 12 damaged areas and 36 sites of 12 non-damaged areas. The results showed that the physicochemical properties of topsoil from non-damaged areas of forest ecosystems were on an average clay loam~sandy loam in soil texture, showing $0.95{\sim}1.10Mg/m^3$ in soil bulk density, $35.7{\sim}44.0m^3/m^3$ in solid phase, 56.0~64.3 in soil porosity, 8.4~35.8% in aggregate stability, 5~13 mm in soil hardness, 5.3~6.1 in pH, 0.14~0.65 dS/m in EC, 0.28~0.42% in T-N, $14{\sim}22cmol^+/kg$ in CEC, $0.15{\sim}0.31cmol^+/kg$ in Ex. $K^+$, $2.07{\sim}2.84cmol^+/kg$ in Ex. $Ca^{2+}$, $0.45{\sim}1.97cmol^+/kg$ in Ex. $Mg^{2+}$, 17~96 mg/kg in Av. $P_2O_5$ and 3.2~5.6% in OM. On the other hand, damaged areas were on an average clay loam~loamy sand in soil texture, showing $1.54{\sim}1.75Mg/m^3$ in soil bulk density, $52.8{\sim}58.0m^3/m^3$ in solid phase, 42.0~47.2 in soil porosity, 4.2~22.5% in aggregate stability, 13~25 mm in soil hardness, 4.8~5.5 in pH, 0.13~0.62 dS/m in EC, 0.02~0.12% in T-N, $5{\sim}15cmol^+/kg$ in CEC, $0.11{\sim}0.18cmol^+/kg$ in Ex. $K^+$, $0.45{\sim}2.36cmol^+/kg$ in Ex. $Ca^{2+}$, $0.39{\sim}0.96cmol^+/kg$ in Ex. $Mg^{2+}$, 15~257 mg/kg in Av. $P_2O_5$ and 0.4~2.2% in OM. After conducting a comparison of physicochemical characteristics of non-damaged forest area and damaged areas, it was found that the physicochemical characteristics of damaged areas were more deteriorated compared to that of non-damaged areas. Therefore, it is judged that it is necessary to establish countermeasures for the conservation and management of the damaged areas for topsoil recycling in the future.

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory (식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성)

  • Lee, Hyoun-Jin;Choi, Ki-Young;Chiang, Mae-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.