• Title/Summary/Keyword: Recycling Aggregates

Search Result 186, Processing Time 0.028 seconds

Performance Evaluation of 100 % RAP Asphalt Mixtures using different types of Rapid-Setting Polymer-Modified Asphalt Emulsion for Spray Injection Application (속경성 바인더 유형에 따른 긴급보수용 스프레이 패칭 상온 재활용 아스팔트 혼합물(RAP)의 성능 평가)

  • Kim, Doo Yeol;Jeon, Ji Seong;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • PURPOSES : The purpose of this study was to determine the optimum mix design of the content of 100 % reclaimed asphalt pavement (RAP) for spray injection application with different binder types. METHODS : Literature review revealed that spray injection method is the one of the efficient and economical methods for repairing a small defective area on an asphalt pavement. The Rapid-Setting Polymer modified asphalt mixtures using two types of rapid setting polymers-asphalt emulsion and a quick setting polymer asphalt emulsion-were subjected to the following tests to determine optimum mix designs and for performance comparison: 1) Marshall stability test, 2) Retained stability test, 3) Wet track abrasion test, and 4) Dynamic stability test. RESULTS and CONCLUSIONS : Type A, B, and C emulsions were tested with different mix designs using RAP aggregates, to compare the performances and determine the optimum mix design. Performance of mixtures with Type A emulsion exceeded that of mixtures with Type B and C emulsion in all aspects. In particular, Type A binder demonstrated the highest performance for WTAT at low temperature. It demonstrated the practicality of using Type A mixture during the cold season. Furthers studies are to be performed to verify the optimum mix design for machine application. Differences in optimum mix designs for machine application and lab application will be corrected through field tests.

Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2012
  • To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.

Quality Improvement of Recycled Fine Aggregate by Neutralization Reaction in Water (습식 중화반응에 의한 순환 잔골재의 품질 향상)

  • Kim, Ha-Suk;Kim, Jin-Man;Sun, Joung-Soo;Bae, Kee-Sun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.146-151
    • /
    • 2015
  • Recycled aggregate by the recycling construction waste has a lot of advantage such as the developing the alternative resource and protecting of environment. However, recycled aggregate is used as the low quality grade, because it is difficult to remove old mortar from aggregate. To use the recycled aggregate as high quality grade, it is important to develop the technology to produce the high quality recycled aggregate. To manufacture the high quality recycled aggregate, old mortar attached on the aggregates should be removed efficiently. Therefore, in this study, we suggested the optimum condition to remove old mortar effectively using sulfuric acid and low speed wet rotary mill for high quality recycled fine aggregate. The results shows that the recycled aggregate satisfy on the standards of KS F 2573 in density, absorption and solid volume, when adequate condition of sulfuric mole ratio and aggregate ratio are make.

A Study on the Improvement of the Legal System Related to Electro-Optical Oxidation Slag

  • Kim, Hyeok-Jung;Lee, Young-Woo;Park, Se-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.299-303
    • /
    • 2020
  • Currently, electric furnace oxide slag is mostly used for soil or road use due to its nature. Although electric furnace oxidation slag is an industrial byproduct, not a circulating aggregate, the shortcomings of electric furnace oxidation slag are gradually being resolved due to the development of technology, and it is said that electric furnace oxidation slag is enough to be used as aggregates in light of research and technology conditions outside of Korea. However, there are difficulties in expanding construction and application, given that the current standard for electric furnace oxid slag only defines recycling purposes and does not have specific regulations. Therefore, institutional supplementation is needed to utilize oxidation slag as electricity. In this study, the laws and system related to oxidation slag by electricity are reviewed, laws related to recycled aggregate are examined, and measures for improvement are proposed.

Mechanical properties of sustainable green self-compacting concrete incorporating recycled waste PET: A state-of-the-art review

  • Shireen T. Saadullah;James H. Haido;Yaman S.S. Al-Kamaki
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.35-57
    • /
    • 2023
  • Majority of the plastic produced each year is being disposed in land after single-use, which becomes waste and takes up a lot of storage space. Therefore, there is an urgent need to find alternative solutions instead of disposal. Recycling and reusing the PET plastic waste as aggregate replacement and fiber in concrete production can be one of the eco- friendly methods as there is a great demand for concrete around the world, especially in developing countries by raising human awareness of the environment, the economy, and Carbon dioxide (CO2) emissions. Self-compacting concrete (SCC) is a key development in concrete technology that offers a number of attractive features over traditional concrete applications. Recently, in order to improve its durability and prevent such plastics from directly contacting the environment, various kinds of plastics have been added. This review article summarizes the latest evident on the performance of SCC containing recycled PET as eco-friendly aggregates and fiber. Moreover, it highlights the influence of substitution content, shape, length, and size on the fresh and properties of SCC incorporating PET plastic. Based on the findings of the articles that were reviewed for this study, it is observed that SCC made of PET plastic (PETSCC) can be employed in construction era owing to its acceptable mechanical and fresh properties. On the other hand, it is concluded that owing to the lightweight nature of plastic aggregate, Reusing PET waste in the construction application is an effective approach to reduces the earthquake risk of a building.

Reducing Hydration Heat of Mass Concrete by Applying Combination of Powdered Materials and CGS as Fine Aggregate (분체계 재료조합 및 석탄 가스화 용융 슬래그를 잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Park, Sang-Won;Han, Jun-Hiu;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.169-180
    • /
    • 2024
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.

A Study on the Shear Behavior of Recycled Aggregate Reinforced Concrete Beams without Stirrups (전단보강이 없는 순환골재 철근콘크리트 보의 전단거동에 관한 연구)

  • Lee, Jung-Hoon;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2013
  • Little investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates. So, this experiment investigates the shear performance and suggests the possible application of Recycled Concrete Aggregate (RCA) for building structures. In general, shear strength of reinforced concrete beam without stirrups is dependent on the compressive strength of concrete, the longitudinal steel ratio, and the shear span-to-depth ratio. In this study, total 28 recycled aggregate concrete beams without shear reinforcement were tested by two-point load and all beams were singly reinforced. The variables studied in this investigation are shear span-to-depth ratios (a/d=2, 3 and 4), RCA replacement ratios (0, 15, 30 and 50%) and longitudinal steel ratios (0.80, 1.27 and 1.84%). The designed concrete compressive strength with a 30 MPa is used. This research will play an important role toward the establishment of the structural design standard for RCA concrete.

Application of Screenings by-product of Crushing Rock in Quarry as Lean Concrete Pavement (산업부산물인 스크리닝스의 활용도 증진을 위한 린콘크리트 적용성 평가)

  • Kang, Min-Soo;Lee, Kyung-Ha;Suh, Young-Chan;Kim, In-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.75-81
    • /
    • 2012
  • In case of crushing rock to produce materials for lean concrete subbase layer in concrete pavement, natural sand is used for the gradation adjustment of aggregates, and the percentage of natural sand used is 30%~40% of the weight ratio of aggregate mix. The supply of natural sand that is used in lean concrete as a fine aggregate is getting harder due to the current of exhaustion of source, and the cost for the purchase of natural sand is included in the cost of roadway construction. This study, therefore, was conducted in order to resolve the exhaustion of materials and economize in construction expenditure by the application of screenings, which is by-product of crushing rock in quarry, as an alternative to natural sand. As a result of a comparative analysis on the application of screenings and natural sand with typical types of rock that is produced in domestic, which was conducted in the first year, It is found out that the use of screenings as a fine aggregate showed better unconfined compression strength. Verification of actual application of screenings was conducted in the second year, after test construction and follow-up investigation. The compressive strength, compaction density, settlement of screenings applied case was higher than that of natural sand. Thus, it is expected that application of screenings to construction in field will contribute to the cost saving, material recycling and the protection of environment.

  • PDF

Coal Ash Combustion Simulation for 500-MW Coal-firing Boiler (500MW급 화력발전 보일러의 석탄회 연소 시뮬레이션)

  • Hwang, Min-Young;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Gyu-Bo;Kim, Seung-Mo;Park, Myung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.939-946
    • /
    • 2011
  • In thermal power generation companies, the recycling of refined ash (LOI < 6%) obtained from a PC-firing furnace is beneficial for the companies, e.g., it can be used for making lightweight aggregates. However, ash having a high LOI, which cannot be reused, is still buried in the ground. To obtain refined ash, the re-burning of high-LOI ash (LOI > 6%) in a PC-firing furnace can be an alternative. In this study, a numerical analysis was performed to demonstrate the effects of ash re-burning. An experimental constant value was decided by TGA (thermo-gravimetric analysis), and a DTF (drop-tube furnace) was used in the experiment for calculating the combustion of ash. On the basis of the trajectory of the moving particles of coal and ash, it was concluded that supplying ash near the burner, which is located high above the ground, is appropriate. On the basis of numerical results, it was concluded that an ash supply rate of 6 ton/h is suitable for combustion, without affecting the PC-firing boiler.

A Analysis of Generated Construction Waste and Dismantlement Method by Field Investigation (분별해체 현장조사에 의한 건설폐기물 발생량 및 공정 분석)

  • Lee, Jong-Chan;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.101-109
    • /
    • 2009
  • This CW(Construction wastes) are increasing as construction industry is growing, so many countries make efforts to recycle CW. Korea also made a stipulation for recycling CW. But the main content of this stipulation is for using recycled aggregates. Advanced countries try to increase reuse rate of not only recycled aggregate but also other kinds of wastes. So they are adopting SDM(separating dismantlement) method and we are also planning to make the system for SDM. This study is about SDM analysis through construction field investigation and difference analysis between SDM and UDM comparing predictive amount by UDM with real generated amount by SDM. First, the generated amount of construction wastes by SDM is more than estimated amount by UDM, and mixed waste was specially reduced more than UDM. The warehouse is easier than the office building to applicate SDM. But still there is no manual for SDM in the site, so establishment of SDM is demanded.

  • PDF