• Title/Summary/Keyword: Recycled paper

Search Result 590, Processing Time 0.02 seconds

Experimental Study on the Use of High-Volume Fly Ash and Basalt Fiber as Emergency Repair Materials for Slope Stabilization: An Analysis of Basic Quality Characteristics (비탈면 긴급 복구를 위한 하이볼륨 플라이애시 및 현무암 섬유 보강 보수재료의 기초 품질 특성에 대한 실험적 연구)

  • Doo-Won Lee;Il-Young Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.111-120
    • /
    • 2024
  • This paper presents a study aimed at developing repair materials for emergency slope stabilization after disasters such as floods. The research assessed how different mix ratios of fly ash and reinforcement with basalt fibers affect the basic quality properties of mortars. Optimal amounts of fly ash were selected based on these properties, and appropriate amounts of chemical admixtures and thickeners were determined to enhance the quality attributed to the basalt fiber mixture. Notably, high-volume fly ash reduced the need for high-performance water reducers and improved workability, known benefits that also helped mitigate fiber ball issues in conjunction with the effects of thickeners. The experimental results indicated that the developed repair materials could potentially be used for emergency repairs, with a focus on initial age strength. This research aims to provide foundational data for repair materials used in future emergency slope stabilizations.

Experimental Study on Fundamental Quality Characteristics of Non-cement Repair Mortar Using High-volume Fly Ash Based on Potassium Magnesia Phosphate (마그네시아-인산칼륨 기반 하이볼륨 플라이애시 활용 무시멘트 보수 모르타르의 기초 품질 특성에 대한 실험적 연구)

  • Doo-Won Lee;Il-Young Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.152-161
    • /
    • 2024
  • This paper investigates the manufacturing and fundamental quality characteristics of potassium magnesia phosphate-based non-cement high-volume fly ash repair mortar. To derive the optimal mix for non-cement mortar, the manufacturing characteristics were evaluated based on the magnesia ratio, and the mortar manufacturing characteristics were assessed with the fly ash mixture. Additionally, the non-cement magnesia repair mortar was produced considering the effects of fly ash mixture and basalt fiber. The evaluation results determined the optimal mix of non-cement magnesia repair mortar, and the feasibility was examined through workability and fundamental quality assessments. The optimal magnesia ratio was found to be P:M 1:0.5, with W/B at 30 %. It was also confirmed that mixing FA and basalt fiber improves fiber dispersion and workability. Even with over 50 % FA mixture, the target strength was achieved within six hours, with a flow increase of up to 18 % and a flexural strength decrease of about 1-2 MPa.

A Study on The Air Pollution Reduction Performance of Mortar Coated with Photocatalyst (광촉매를 코팅한 모르타르의 미세먼지 저감 성능 연구)

  • Seung-Jin Lee;Min-Ki Jeon;Seung-Tae Jeong;In-Hwan Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.94-101
    • /
    • 2024
  • In this paper, the performance of air pollution reduction by coating the photocatalyst solution on the mortar surface was analyzed to ensure the possibility of applying the photocatalyst to structures with a large specific surface area. The photocatalytic concentrations of the coating solution were set to 1.5 % and 3.0 %, and the types of binders were considered as experimental variables, such as ultra-high performance concrete (UHPC), ordinary portland cement (OPC), and blast furnace slag. As the photocatalyst concentration increases, the air pollution reduction performance increases. In addition, as a result of the air pollution reduction performance, the NOx concentration reduction rate was the highest for UHPC, and the air pollution reduction performance increased as the blast furnace slag was replaced. Therefore, the amount of TiO2 remaining on the surface varies depending on the density of the tissue due to the difference in particles caused by the difference in the amount of TiO2 remaining on the surface.

Evaluation of Tensile and Compressive Performance of CFRP Rebars according to Heating Temperatures (가열온도에 따른 CFRP Rebar의 인장 및 압축 성능 평가)

  • Jae-Hee Lee;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2024
  • The demand for FRPs that are corrosion-free and have an excellent tensile strength-to-weight ratio. However, there is a lack of research on the mechanical properties of FRP in the form of rebars, especially the changes in performance due to heating. Therefore, in this paper, 60 tensile and compression specimens of CFRP rebars with a diameter of 12 mm were fabricated and subjected to direct tensile and direct compression tests, and their performance was evaluated according to the heating temperature. It was found that as the heating temperature increases above 300 ℃, the performance decrease becomes larger due to the burning of epoxy. The compressive strength was found to be much lower than the tensile strength, but the modulus of elasticity was found to be the same in tension and compression.

Environmentally Friendly Moisture-proof Paper with Superior Moisture Proof Property (I) -Properties of Moisture Proof Chemicals- (방습 효과가 우수한 환경친화적 방습지(제1보) -방습제의 특성-)

  • 유재국;조욱기;이명구
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.15-20
    • /
    • 2001
  • The function of the moisture-proof paper is to prevent moisture from adsorbing into the packed goods. Water-vapor transmission rate of the moisture-proof paper should be less than 100g/$m^2$.24hr and the optimum rate would be less than 50g/$m^2$.24hr. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. The purpose of this paper was to make moisture-proof paper using the mixture of SB latex and wax emulsion which was recyclable and environmentally friendly. Water vapor transmission rate showed less than 50g/$m^2$.24hr in mixture ratio of 85:15, 87:13, 90:10. Especially the mixture ratio of 87:13 showed the most favorable water-vapor transmission rate. However, the moisture-proof layer was destroyed slightly by folding in packing. It has been observed that there was no close relationship between water-vapor transmission rate of the moisture-proof paper and grammage of the base paper, but the density of base paper had influenced on water vapor transmission rate. It was also observed that the moisture-proof paper could be recycled. The moisture-proof paper was similar to base paper in degree of the pulping, and there was no significant difference in dispersion between moisture-proof paper and base paper. Most of wax particles which caused the spots during drying process could be removed by flotation process. Tensile strength and tear strength of both moisture-proof paper and base paper after pulping were measured to examine the fiber bonding, and no significant difference in physical properties was observed.

  • PDF

Removal Efficiency of Microstickies by Flotation Process (부유부상 공정의 마이크로 스틱키 제거 효율에 관한 연구)

  • Park, Il;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.1-8
    • /
    • 2005
  • Increase in the utilization rate of recycled paper and closing level of papermaking system increased the problem associated with stickies that include decrease in process runnability and product quality. It is required to establish a process for removing the micro stickies to solve the problems associated with stickies. In this study, the application of flotation process as a method to remove micro stickies was examined. Model micro stickies (MMS) were prepared using microcrystalline cellulose (MCC) and pressure sensitive adhesives (PSA), and the influence of three nonionic surfactants on the removal efficiency of MMS from flotation process was examined. Also the effect of surfactants on the deposition of micro stickies that remaining in the papermaking wet end onto wire was examined. Removal efficiency of MMS by flotation was increased when the proportion of nonionic surfactant with propylene oxide (PO) type hydrophilic tail was increased and stock pH was 7. It was suggested that this nonionic surfactant minimized the increase of surface energy of hydrophobic MMS. The MMS with high hydrophobicity remaining in the papermaking system, however, would cause more serious deposition problems on papermaking wet end. Therefore, it is of great importance to increase the removal efficiency of MMS in flotation process for the prevention of papermaking system contamination caused by stickies deposition.

Determination of Optimum Dosage of Polymer by Zeta potential in the Wastewater Treatment (수처리 시 Zeta전위 측정에 의한 응집제 주입량 결정)

  • Cho, Jun-Hyung;Kang, Mee-Ran
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.27-31
    • /
    • 2006
  • Sedimentation characteristics such as SS, COD removal efficiency of wastewater in the toilet paper mill using recycled paper were examined by zeta potential. Optimum dosage of coagulant were determined by turbidity, SS, COD and then equation for treatment efficiency was suggested. Mechanical strength of floc was determined by turbidity.

  • PDF

Nitric-Acid Pulping of Municipal Wastepapers and its Spent-Liquor Utilization for Fertilizers(I) -Study on the Nitric-Acid Pulping Conditions of OCC Pulp- (도시 폐휴지의 질산 펄프제조와 펄프폐액의 입상 비료화 기술개발(I) -폐골판지 상자(OCC)의 질산 펄프제조 조건-)

  • 임기표;위승곤;김창래;양정훈
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.4
    • /
    • pp.74-80
    • /
    • 2000
  • A series of studies on nitric-acid pulping of municipal recycled waste papers were carried out to substitute the bleached chemical pulp imported for producing printing paper as well as to use its solidified spent-liquor as fertilizer. The first experiment was carried out to find the optimum treatment conditions such as pulp consistency, nitric acid charge and temperature in $HNO_3$-alkali pulping process. The results obtained were as follows: 1. Some selective delignification of OCC pulp was conducted by $HNO_3$-alkali process. The higher the temperature and concentration of nitric acid, the lower the pulp yield and kappa number of treated pulp. while its brightness was increased. 2. The higher consistency required the stronger mixing in case of more than 5% pulp. 3. In the laboratory, the suitable $HNO_3$-treating condition seemed to be less than 6% consistency, lower than 500% $HNO_3$charge on pulp and lower than $100^{\circ}C$ in cooking temperature. 4. The spent liquor with 1.77% N-content seemed to be slow-release nitrogen fertilizer suitable for agriculture.

  • PDF

Differences in Characteristics of Recycled ONP for CaCO3 Adding Techniques (CaCO3 첨가법에 따른 재생 ONP의 특성변화)

  • Ahn, Young-Jun;Nam, Seong-Young;Um, Nam-Il;Ahn, Ji-Whan;Han, Choon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.97-102
    • /
    • 2014
  • In order to improve the refresh rate of old newspaper(ONP), PCC shape-controlling experiments were carried out. The effect of a PCC polymorph on improving the quality of old newspaper was studied for a transformation from waste paper to eco-friendly paper. The synthesis of PCC consists of an in-situ process and a loading process to enhance the refresh rate of old newspaper. The characteristics between the in-situ process and the loading process could be analysed by SEM analyses of coated fiber surfaces. The retention rate ranges from 65 to 67% after the application of the in-situ process, and that after the loading process ranges from 55 to 58%. The retention rates thus show a difference of about 7-10%. In addition, the whiteness and ERIC characteristics of the in-situ process gave more efficient results than those of the loading process.

Application of WCT(Wet Compaction Test) for Fiber Evaluation

  • Seo, Yung-B.;Ha, In-Ho;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.9-15
    • /
    • 2006
  • Wet compaction test (WCT) is a fiber evaluation method where wet fibers are compressed at one side of a cylinder and water drains out from the other side. The consistency of the fiber furnishes and their pressures are recorded during the test. In the previous study we found that WCT results always gave better coefficients of determination in fiber furnish drainage, and paper properties (density, tensile, tear, and burst strength) than those of WRV (water retention value). Fiber freeness and fiber length correlated well with drainage and tear strength of the furnishes, respectively; however, their correlations were very much improved by combining the WCT results. In this study, we used the WCT test for fractionated fiber furnishes to see whether improvement of the WCT is possible. We found that strength properties such as breaking length and burst index were correlated better with the fractionated long fiber furnishes. Drainage was greatly affected by the presence of short fiber furnishes. We used bleached chemical pulps (SwBKP, HwBKP), recycled pulp (OCC), and mechanical pulp (BCTMP) as fiber furnishes in this study. Fiber fractionation can be performed on-line in these days by using multifractor and WCT can be used as an on-line test in papermachine in the future.