DOI QR코드

DOI QR Code

Evaluation of Tensile and Compressive Performance of CFRP Rebars according to Heating Temperatures

가열온도에 따른 CFRP Rebar의 인장 및 압축 성능 평가

  • Jae-Hee Lee (Dept. of Civil & Environmental Engineering, Gachon University) ;
  • Sung-Won Yoo (Dept. of Civil & Environmental Engineering, Gachon University)
  • 이재희 (가천대학교 토목환경공학과) ;
  • 유성원 (가천대학교 토목환경공학과)
  • Received : 2024.01.03
  • Accepted : 2024.01.12
  • Published : 2024.03.30

Abstract

The demand for FRPs that are corrosion-free and have an excellent tensile strength-to-weight ratio. However, there is a lack of research on the mechanical properties of FRP in the form of rebars, especially the changes in performance due to heating. Therefore, in this paper, 60 tensile and compression specimens of CFRP rebars with a diameter of 12 mm were fabricated and subjected to direct tensile and direct compression tests, and their performance was evaluated according to the heating temperature. It was found that as the heating temperature increases above 300 ℃, the performance decrease becomes larger due to the burning of epoxy. The compressive strength was found to be much lower than the tensile strength, but the modulus of elasticity was found to be the same in tension and compression.

최근 부식이 없고 중량 대비 인장강도가 우수한 FRP에 대한 수요가 증가하고 있다. 그러나 CFRP Rebar 형태의 FRP의 기계적 특성 연구, 특히 가열에 따른 성능 변화와 압축에 대한 연구는 부족한 실정이다. 따라서 본 논문에서는 직경 12 mm CFRP Rebar로 60개의 인장 및 압축 시험체를 제작하여 직접인장시험 및 직접압축시험을 실시하고, 가열온도에 따른 성능을 평가하였다. 가열온도가 300 ℃ 이상으로 상승할수록 CFRP Rebar의 에폭시가 연소하여 성능 저하가 커지는 것으로 나타났다. 압축강도는 인장강도 보다 크게 작은 것으로 나타났으나, 탄성계수는 인장과 압축에서 동일하게 나타나는 것을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 RS-2021-KA163381)으로 수행되었음.

References

  1. ACI Committee 440 (2015). Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer Bars (ACI 440.1R-15), American Concrete Institute, Farmington Hills, MI.
  2. AlNajmi, L., Abed, F. (2020). Evaluation of FRP bars under compression and their performance in RC columns, Materials, 13(20), 4541.
  3. American Society for Testing and Materials (ASTM) (2016). ASTM D7205: Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars, ASTM International: West Conshohocken, PA, USA, 2016.
  4. American Society for Testing and Materials (ASTM) (2023). ASTM D7695: Standard test method for compressive properties of rigid plastics., ASTM International: West Conshohocken, PA, USA, 2016.
  5. El-Tahan, M., Galal, K. (2013). New thermoplastic CFRP bendable rebars for reinforcing structural concrete elements, Composites Part B: Engineering, 45(1), 1207-1215. https://doi.org/10.1016/j.compositesb.2012.09.025
  6. Ismail, A.S., Jawaid, M., Hamid, N.H., Yahaya, R., Hassan, A., Asim, M., Supian, A.B.M. (2021). Effect of curing temperature on mechanical properties of bio-phenolic/epoxy polymer blends, Journal of Polymers and the Environment, 30, 878-885.
  7. Sun, Y., Ji, J.H., Zhu, H., Dong, Z.Q., Zhang, P., Yan, M., Soh, C.K. (2023). Flexural behaviours of pretensioned prestressed concrete-UHDC composite beams reinforced with CFRP bars, Composite Structures, 322, 117385.
  8. Wang, Y.C., Kodur, V. (2005). Variation of strength and stiffness of fibre reinforced polymer reinforcing bars with temperature, Cement and Concrete Composites, 27(9-10), 864-874. https://doi.org/10.1016/j.cemconcomp.2005.03.012
  9. Zanjanijam, A.R., Wang, X., Ramezani, M., Holberg, S., Johnson, P.A. (2023). Phenolic resin/coal char composites: curing kinetics and thermal/mechanical performance, Polymer, 281, 126103.