• 제목/요약/키워드: Recycled materials

검색결과 904건 처리시간 0.031초

Electrochemical Characteristics of CFX Based Lithium Primary Batteries Produced by Carbon Fiber Reinforced Plastic -Derived Waste Carbon Fibers (탄소섬유강화플라스틱 유래 폐 탄소섬유로 제조된 불화탄소 기반 리튬일차전지의 전기화학적 특성)

  • Naeun Ha;Chaehun Lim;Seongmin Ha;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • 제34권5호
    • /
    • pp.515-521
    • /
    • 2023
  • In this study, waste carbon fiber obtained by pyrolysis of carbon fiber reinforced plastic (CFRP) was used to produce carbon fluoride through vapor phase fluorination and recycled as a reducing electrode material for lithium primary batteries. First, the physicochemical properties of the waste carbon fiber obtained by pyrolysis were determined, and the structural and chemical properties of carbon fluoride were analyzed to evaluate the effect of vapor phase fluorination on the waste carbon fiber. XRD analysis confirmed that the hexagonal network carbon laminated structure (002 peak) of the waste carbon fiber was gradually converted into a carbon fluoride structure (CFX, 001 peak) as the temperature of gas phase fluorination increased. The discharge capacity of the lithium primary battery produced using this carbon fluoride was up to 862 mAh/g. This was compared to the discharge capacity of carbon fluoride-based Li-ion batteries made of other carbon materials. These results suggest that carbon fluoride made from waste CFRP-based carbon fibers can be used as a reducing electrode material for Li-ion batteries.

Analysis of the Effects of Recycling and Reuse of Used Electric Vehicle Batteries in Korea (한국의 전기차 사용 후 배터리 재활용 및 재사용 효과 분석 연구)

  • Yujeong Kim
    • Economic and Environmental Geology
    • /
    • 제57권1호
    • /
    • pp.83-91
    • /
    • 2024
  • According to the IEA (2022), global rechargeable battery demand is expected to reach 1.3 TWh in 2040. EV batteries will account for about 80% of this demand, and used EV batteries are expected to be discharged after 30 years. Used EV batteries can be recycled and reused to create new value. They can also resolve one of the most vulnerable parts of the battery supply chain: raw material insecurity. In this study, we analyzed the amount of used batteries generated by EV in Korea and their potential for reuse and recycling. As a result, it was estimated that the annual generation of used batteries for EV began to increase to more than 100,000 in '31 and expanded to 810,000 in '45. In addition, it was found that the market for recycling EV batteries in '45 could be expected to be equivalent to the production of 1 million batteries, and the market for reuse could be expected to be equivalent to the production of 36 Gwh of batteries. On the other hand, according to the plan standard disclosed by the recycling company, domestic used EV batteries can account for 11% of the domestic recycling processing capacity (pre-treatment) ('30). So it will be important to manage the import and export of used batteries in terms of securing raw materials.

Analysis of Flow Velocity in the Channel according to the Type of Revetments Blocks Using 3D Numerical Model (3차원 수치모델을 활용한 호안 블록 형상에 따른 하도 내 유속 분석)

  • Dong Hyun Kim;Su-Hyun Yang;Sung Sik Joo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • 제16권4호
    • /
    • pp.9-18
    • /
    • 2023
  • Climate change affects the safety of river revetments, especially those associated with external flooding. Research on slope reinforcement has been actively conducted to enhance revetment safety. Recently, technologies for producing embankment blocks using recycled materials have been developed. However, it is essential to analyze the impact of block shapes on the flow characteristics of exclusion zones for revetment safety. Therefore, this study investigates the influence of revetment block shapes on the hydraulic characteristics of revetment surfaces through 3D numerical simulations. Three block shapes were proposed, and numerical analyses were performed by installing the blocks in an idealized river channel. FLOW-3D was used for the 3D numerical simulations, and the variations in maximum flow velocity, bed velocity beneath the revetment, and maximum shear stress were analyzed based on the shapes of the revetment blocks. The results indicate that for irregularly sized and spaced revetment blocks, such as the natural stone-type vegetation block (Block A), when connected to the revetment in an irregular manner, the changes in flow velocity in the revetment installation zone are more significant than those for Blocks B and C. It is anticipated that considering the topographical characteristics of rivers in the future will enable the design of revetment blocks with practical applicability in the field.

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제32권1호
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.

Changes of Soil Properties through the Remediation Processes and Techniques for the Restoration of Remediated Soils (오염 토양 정화공정에 의한 토양의 특성 변화 및 정화토의 회복기술)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hun;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • 제53권4호
    • /
    • pp.441-477
    • /
    • 2020
  • There have been raised other environmental issues related to remediated soils piled up in numerous carry-out processing facilities because a considerable quantity of them have been produced every year, but most of them have not been relevantly reused or recycled. Thus, this article reports the trend of researches on the development of techniques to restore the quality of remediated soils to activate their reuse and recycling. Firstly, the tendency of change in soil properties through remediation processes was looked over, and then the degradation of soil quality was characterized according to the type of remediation processes. Besides, the direction of policy to promote the reuse and recycling of remediated soils was introduced, and finally, the future works needed were suggested. This article was prepared based on the results of the survey of domestic and foreign literature. A number of literature were reviewed to scrutinize the change of soil properties due to remediation processes and diverse techniques for the amendment and restoration of remediated soils. Furthermore, the policies related to the reuse and recycling of remediated soils were arranged with the reference of the first and second versions of the Soil Conservation Master Plan of Korea. The literature survey focused on three kinds of remediation technologies, such as land farming, soil washing, and thermal desorption, which were most frequently used so far in Korea. The results indicate that the tendency of change in soil properties was significantly different depending on the type of remediation processes applied, and the degradation characteristics of soil quality were also totally different between them. The soil amendment and restoration can be categorized as three techniques depending on the type of substances used, such as inorganic, organic, and biological ones. Diverse individual materials have been used, and the soil properties improved or enhanced were dependent on the type of specific materials utilized. However, few studies on the restoration of soil qualities degraded during the remediation processes have not been carried out so far. The second Soil Conservation Master Plan states the quality certification and target management system of remediated soils, and it is expected that their reuse and recycling will be facilitated hereafter. With the consideration of the type of remediation processes implemented and public utility, the restoration technologies of remediated soils should be developed for the vitalization of their reuse and recycling. Besides, practical and specific measures should be taken to support the policy specified in the second Soil Conservation Master Plan and to promote reuse/recycling of remediated soils.

The Analysis of Environmental Loads and Material Recycling of the Nutrients by the Livestock Wastewater Originating from Imported Feeds (수입사료에 의한 가축분뇨 물질순환 및 환경부하 분석)

  • Yoon, Young-Man;Lee, Sang-Eun;Chung, Doug-Young;Cho, Gyu-Yong;Kim, Jong-Duk;Kim, Chang-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제28권2호
    • /
    • pp.139-154
    • /
    • 2008
  • The nearly 75% of animal feed materials used for livestock production are imported every year in Korea. Most of imported feed ingredients are concentrated feeds such as com, wheat, soybean, soybean meal, etc. and they are used as the source materials for the production of assorted feed. The imported concentrated feeds are high in nitrogen and phosphorus. Therefore, the consistent import of feed ingredients may cause an increase of nutrient deposit in our agricultural ecosystem. In the current review, it was discussed with the situation of the feed importation and its nutritional composition to evaluate the nutrient load by the imported feeds onto agricultural ecosystem. The nutrient load caused by imported feeds in agricultural environment was compared with the nutrient demand for crop production. The amounts of N, $P_2O_5\;and\;K_2O$ introduced by the imported fteds in Korea were 371, 140 and 143 Ktons. And, the N, $P_2O_5\;and\;K_2O$ loads excreted from imported feeds in livestock were 148, 84 and 86 Ktons of N, $P_2O_5\;and\;K_2O$ and These nutrient loads by the imported feeds are at the percentage of N 52%, $P_2O_5$ 52% and $K_2O$ 42% in the comparison of total nutrient amounts excreted from livestock animals in Korea. The 82.3% of nutrients excreted from livestock was recycled to crop land as compost and liquid fertilizer, and the others were discharged to river after water treatment processing or disposed to ocean. Also, passing through the recycling process far the production of compost and liquid fertilizer, the amount of nutrients was reduced by the ammonia vaporization of livestock feces and urine. Accordingly, N 81, $P_2O_5$ 74 and $K_2O$ 76 Ktons in the nutrients excreted from livestock were estimated to be utilized in the crop land. Consequently, it was estimated that 44, 48 and 69 Ktons of N, $P_2O_5\;and\;K_2O$ were taken up with crops in the consideration of the ratio of mineralization, and the amounts of leached or deposited N, $P_2O_5\;and\;K_2O$ in crop land were estimated to be 37, 27 and 7 Ktons, respectively. It is estimated that 12%, 34% and 48% of N, $P_2O_5\;and\;K_2O$ introduced by the imported feeds were used by crops, and 10%, 34% and 5% of N, $P_2O_5\;and\;K_2O$ were leached or deposited in agricultural ecosystem. Therefore, considering the leached and deposited amounts of N, $P_2O_5\;and\;K_2O$ originated from the imported feed ingredients, the consistent import of feeds may gradually increase the nutrient load onto agricultural ecosystem.

The Development and Application of Teaching-Learning Process Plans for Raising Awareness of the Secondary School Student's LOHAS(Lifestyles of Health and Sustainability) - Focused on the unit of 'the choice and maintenance of clothing' in Technology-Home Economics - (중학생의 로하스 의식 함양을 위한 교수.학습 과정안 개발 및 적용 - 기술.가정 '의복의 선택과 관리' 단원을 중심으로 -)

  • Kim, Myoung-Soon;Lee, Hye-Ja
    • Journal of Korean Home Economics Education Association
    • /
    • 제22권1호
    • /
    • pp.51-65
    • /
    • 2010
  • The purpose of this study was to raise the awareness of LOHAS(Lifestyle of Health and Sustainability) in the secondary school students. We extracted the related contents to LOHAS from the unit of 'The choice and maintenance of clothing' in the second-year's textbook of Technology-Home Economics, and selected the learning subjects. We also developed the new teaching-learning process plan on practical problem focused lesson, and applied them to the eight classes located in Siheung, Gyeonggi-do, for 5 hours per each class. The learning subjects of the teaching-learning process plan included five items as followings; general awareness, organic fashion, natural fabric, recycled material fashion, and natural dyeing, which were related to LOHAS consumption. The overall topic of the teaching-learning process plan was 'What should do to raise the awareness of LOHAS in order to practice LOHAS consumption in the choice of clothing'. Consequently, the results were abtained as follow; The general awareness of LOHAS as well as the awareness of LOHAS consumption in the choice of clothing increased after classes significantly, compared to those before. Thirty-four materials including worksheets, reading materials and teacher's guide could help to raise the awareness of LOHAS. Also these classes enabled the students to raise their awareness of LOHAS, to improve their opinions and attitudes on LOHAS consumption in the choice of clothing, and to take an interest in the lesson of Home-Economics. This study might have the educational significance in that it made the students directly participate in the national and social trend of the awareness of LOHAS, and upgrade their quality as good LOHAS consumers. Also further teaching-learning process plan in Home-Economics are necessary to promote the awareness of LOHAS for better health, environment, and society.

  • PDF

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • 제34권3호
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

A Study on the Development Strategy of the Foods Package Design (식품 패키지디자인 개발 전략에 관한 연구)

  • Choi, Jeong-Gye;Lee, Sang-Youn
    • The Korean Journal of Franchise Management
    • /
    • 제2권2호
    • /
    • pp.45-69
    • /
    • 2011
  • A basic function of packaging is preservability, delivery, subdivision, aesthetic and serviceability on packaging. Originally, the function and necessity of packaging is on preservability, but today it is expending before. then packaging is focusing on sales promotion. Although it is hard to say production itself, it could does when it is made. also, it is important for product to be goods when packaging and its materials are identification on matching each other. The role of packaging design is a core factor that satisfy consumer a various of needs and wants. In the past, the role of food packaging design is just preservability and delivery on product. but then, nawaday it is asked a various role. Not only present products have to get inherency but also have added value. That is, advanced technologies, information, and richness from materials which are diversity for coming a extention of choice. currently, food packaging design shouldn't have stayed on just packaging which cover beautiful. Packaging design is a symbolic sign. It is importance for manager to do R&D, producing, and distribution, also for consumer who use and buy the product whether manager and consumer think package design is a main mediation. This day, food design pay attention to be asking consumer's a number of sensitivity. It is the reason that the package is importance and exist. This article is to examine preservability, delivery, subdivision, aesthetic, serviceability, and environmental orientation in order to develop and show a method and theories to find package design in food industry the reason that why sales promotion and its profit increase. Consequently, draw on the function of package design effects the benefit on product is distribution. Green Design on the food packages by combining recycled and biodegradable food packages for the development of practices and long life to the look of the food package design practices.

The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating (유연 종이 식품 포장재의 개질 아크릴 에멀젼 코팅 특성 및 재활용성 평가)

  • Myungho Lee;In Seok Cho;Dong Cheol Lee;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • 제29권3호
    • /
    • pp.153-161
    • /
    • 2023
  • The worldwide effects of COVID-19 have led to a surge in online shopping and contactless services. The consumption pattern has caused the issues such as the environmental pollution together with the increase of plastic waste. Reducing the reliance on the petroleum based plastic use for the package and replacing it with environmentally friendly material are the simple ways in order to solve those problems. Paper is an eco-friendly product with high recyclability as the food packaging materials but has still poor barrier properties. A barrier coating on surface of the paper can be achieved with the proper packaging materials featuring water, gas and grease barrier. Polyethylene (PE) or polypropylene (PP) coatings which are generally laminated or coated to paper are widely used in food packaging applications to protect products from moisture and provide water or grease resistance. However, recycling of packaging containing PE or PP matrix is limited and costly because those films are difficult to degrade in the environment. This study investigated the recyclability of modified acrylic emulsion coating papers compared to PE and PP polymer matrixes as well as their mechanical and gas barrier properties. The results showed that PE or modified acrylic emulsion coated papers had better mechanical properties compared to the uncoated paper as a control. PE or PP coating papers showed strong oil resistance property, achieving a kit rating of 12. Those papers also had a significantly higher percentage of screen reject during the recycling process than modified acrylic coated paper which had a screen rejection rate of 6.25%. In addition an uncoated paper had similar value of a screen rejection rate. It may suggest that modified acrylic emulsion coating paper can be more easily recycled than PE or PP coating papers. The overall results of the study found that modified acrylic emulsion coating paper would be a viable alternative to suggest a possible solution to an environmental problem as well as enhancing the weak mechanical and poor gas barrier properties of the paper against moisture.