DOI QR코드

DOI QR Code

Electrochemical Characteristics of CFX Based Lithium Primary Batteries Produced by Carbon Fiber Reinforced Plastic -Derived Waste Carbon Fibers

탄소섬유강화플라스틱 유래 폐 탄소섬유로 제조된 불화탄소 기반 리튬일차전지의 전기화학적 특성

  • Naeun Ha (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chaehun Lim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seongmin Ha (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seongjae Myeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Young-Seak Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 하나은 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 하성민 (충남대학교 응용화학공학과) ;
  • 명성재 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2023.07.13
  • Accepted : 2023.08.01
  • Published : 2023.10.10

Abstract

In this study, waste carbon fiber obtained by pyrolysis of carbon fiber reinforced plastic (CFRP) was used to produce carbon fluoride through vapor phase fluorination and recycled as a reducing electrode material for lithium primary batteries. First, the physicochemical properties of the waste carbon fiber obtained by pyrolysis were determined, and the structural and chemical properties of carbon fluoride were analyzed to evaluate the effect of vapor phase fluorination on the waste carbon fiber. XRD analysis confirmed that the hexagonal network carbon laminated structure (002 peak) of the waste carbon fiber was gradually converted into a carbon fluoride structure (CFX, 001 peak) as the temperature of gas phase fluorination increased. The discharge capacity of the lithium primary battery produced using this carbon fluoride was up to 862 mAh/g. This was compared to the discharge capacity of carbon fluoride-based Li-ion batteries made of other carbon materials. These results suggest that carbon fluoride made from waste CFRP-based carbon fibers can be used as a reducing electrode material for Li-ion batteries.

본 연구에서는 탄소섬유강화플라스틱(CFRP)을 열분해하여 얻은 폐 탄소섬유를 이용하여 기상 불소화를 통해 불화탄소를 제조하고 리튬일차전지의 환원극 소재로 재활용하고자 하였다. 먼저 열분해로 얻은 폐 탄소섬유의 물리화학적 특성을 파악하였으며, 이 폐 탄소섬유에 기상 불소화 효과를 평가하기 위하여 불화탄소의 구조적, 화학적 특성을 분석하였다. XRD 분석에 의해 폐 탄소섬유의 육각망탄소 적층구조(002피크)는 기상 불소화의 온도가 증가함에 따라 점차 불화탄소 구조(001피크)로 전환되었음을 확인하였다. 이 불화탄소를 이용하여 제조된 리튬일차전지의 방전용량은 최대 862 mAh/g이었다. 이는 다른 탄소 재료로 제조한 불화탄소 기반 리튬이온차전지의 방전용량과 비교하였을 때 우수한 성능을 보였다. 이러한 결과는 폐 CFRP 기반 폐탄소섬유를 이용한 불화탄소는 리튬일차전지의 환원극 소재로 활용할 수 있을 것으로 여겨진다.

Keywords

Acknowledgement

본 연구는 2023학년도 충남대학교 4단계 BK21 대학원혁신사업의 지원을 받아 수행된 연구임.

References

  1. R. A. Witik, R. Teuscher, V. Michaud, C. Ludwig, and J. A. E. Manson, Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling, Compos. A: Appl. Sci. Manuf., 49, 89-99 (2013).  https://doi.org/10.1016/j.compositesa.2013.02.009
  2. J. Zhang, V. S. Chevali, H. Wang, and C. H. Wang, Current status of carbon fibre and carbon fibre composites recycling, Compos. B: Eng., 193, 108053 (2020). 
  3. L. Giorgini, T. Benelli, G. Brancolini, and L. Mazzocchetti, Recycling of carbon fiber reinforced composite waste to close their life cycle in a cradle-to-cradle approach, Curr. Opin. Green Sustain. Chem., 26, 100368 (2020). 
  4. S. K. Gopalraj and T. Karki, A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis, SN Appl. Sci., 2, 433 (2020). 
  5. I. Okajima and T. Sako, Recycling of carbon fiber-reinforced plastic using supercritical and subcritical fluids, J. Mater. Cycles Waste Manag., 19, 15-20 (2017). 
  6. I. Okajima, M. Hiramatsu, Y. Shimamura, T. Awaya, and T. Sako, Chemical recycling of carbon fiber reinforced plastic using supercritical methanol, J. Supercrit. Fluids, 91, 68-76 (2014).  https://doi.org/10.1016/j.supflu.2014.04.011
  7. J. H. Zhu, P. Chen, M. Su, C. Pei, and F. Xing, Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin, Green Chem., 21, 1635-1647 (2019).  https://doi.org/10.1039/C8GC03672A
  8. S. R. Naqvi, H. M. Prabhakara, E. A. Bramer, W. Dierkes, R. Akkerman, and G. Brem, A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy, Resour. Conserv. Recycl., 136, 118-129 (2018).  https://doi.org/10.1016/j.resconrec.2018.04.013
  9. S. A. Hadigheh, Y. Wei, and S. Kashi, Optimisation of CFRP composite recycling process based on energy consumption, kinetic behaviour and thermal degradation mechanism of recycled carbon fibre, J. Clean. Prod., 292, 125994 (2021).
  10. L. O. Meyer, K. Schulte, and E. Grove-Nielsen, CFRP-recycling following a pyrolysis route: Process optimization and potentials, J. Compos. Mater., 43, 1121-1132 (2009).  https://doi.org/10.1177/0021998308097737
  11. L. Guo, L. Xu, Y. Ren, Z. Shen, R. Fu, H. Xiao, and J. Liu, Research on a two-step pyrolysis-oxidation process of carbon fiber-reinforced epoxy resin-based composites and analysis of product properties, J. Environ. Chem. Eng., 10, 107510 (2022). 
  12. E. Pakdel, S. Kashi, R. Varley, and X. Wang, Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes, Resour. Conserv. Recycl., 166, 105340  (2021).
  13. M. K. Hagnell and M. Akermo, The economic and mechanical potential of closed loop material usage and recycling of fibre-reinforced composite materials, J. Clean. Prod., 223, 957-968 (2019).  https://doi.org/10.1016/j.jclepro.2019.03.156
  14. N. Sharma, M. Dubois, K. Guerin, V. Pischedda, and S. Radescu, Fluorinated (Nano)Carbons: CFx Electrodes and CFx-Based Batteries, Energy Technol., 9, 2000605 (2020). 
  15. S. Ha, C. Lim, and Y. S. Lee, Fluorination methods and the properties of fluorinated carbon materials for use as lithium primary battery cathode materials, J. Ind. Eng. Chem., 111,1-17 (2022).  https://doi.org/10.1016/j.jiec.2022.03.044
  16. Y. Peng, Y. Liu, R. Ali, J. Ma, J. Hou, X. Yang, and X. Jian, Air plasma-induced carbon fluoride enabling active CF bonds for double-high energy/power densities of Li/CFx primary battery, J. Alloys Compd., 905, 164151 (2022). 
  17. D. Damien, P. M. Sudeep, T. N. Narayanan, M. R. Anantharaman, P. M. Ajayan, and M. M. Shaijumon, Fluorinated graphene based electrodes for high performance primary lithium batteries, RSC Adv., 111, 1-17 (2013). 
  18. C. Delabarre, M. Dubois, J. Giraudet, K. Guerin, and A. Hamwi, Electrochemical performance of low temperature fluorinated graphites used as cathode in primary lithium batteries, Carbon, 44, 2543-2548 (2006).  https://doi.org/10.1016/j.carbon.2006.05.013
  19. Y. Li, X. Wu, C. Li, S. Wang, P. Zhou,T. Zhou, Z. Miao, W. Xing, S. Zhou, and J. Zhou, Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: effect of graphitization of carbon nanotubes, J. Mater. Chem., 3, 25702 (2019). 
  20. S. Jiang, P. Huang, J. Lu, and Z. Liu, The electrochemical performance of fluorinated ketjenblack as a cathode for lithium/fluorinated carbon batteries, RSC Adv., 11, 25461-25470  (2021). https://doi.org/10.1039/D1RA03873G
  21. P. F. Fulvio, S. S. Brown, J. Adcock, T. Mayes, B. Guo, X. G. Sun, S. M. Mahurin, G. M. Veith, and S. Dai, Low-temperature fluorination of soft-templated mesoporous carbons for a high-power lithium/carbon fluoride battery, Chem. Mater., 23, 4420-4427 (2011).  https://doi.org/10.1021/cm2012395
  22. T. I. Jeon, J.H. Son, K. H. An, Y. H. Lee, and Y. S. Lee, Terahertz absorption and dispersion of fluorine-doped single-walled carbon nanotube, J. Appl. Phys., 98, 3 (2005). 
  23. J. S. Im, S. J. Park, and Y. S. Lee, The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity, Int. J. Hydrog. Energy, 34(3), 1423-1428 (2009).  https://doi.org/10.1016/j.ijhydene.2008.11.054
  24. N. Ha, S. G. Jeong, C. Lim, S. Ha, C. G. Min, Y. Choi, and Y. S. Lee, Preparation and electrochemical characteristics of waste-tire char-based CFX for lithium-ion primary batteries, Carbon Lett., 33, 1013-1018 (2023).  https://doi.org/10.1007/s42823-023-00488-1
  25. C. Lim, Y. Ko, C. H. Kwak, S. Kim, and Y. S. Lee, Mesophase pitch production aided by the thermal decomposition of polyvinylidene fluoride, Carbon Lett., 32, 1329-1335 (2022).  https://doi.org/10.1007/s42823-022-00369-z
  26. C. Lim, C. H. Kwak, Y. Ko, and Y. S. Lee, Mesophase pitch production from fluorine-pretreated FCC decant oil, Fuel, 328, 125244 (2022). 
  27. D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly, and P. J. Klar, Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy, Carbon, 161, 359-372 (2020).  https://doi.org/10.1016/j.carbon.2019.12.094
  28. S. E. Lee, J. H. Kim, Y. S. Lee, B. C. Bai, and J. S. Im, Effect of crystallinity and particle size on coke-based anode for lithium ion batteries, Carbon Lett., 31, 911-920 (2021). https://doi.org/10.1007/s42823-020-00196-0
  29. J. H. Lim, Y. Myung, M. H. Yang, and J. Lee, Facile formation of a LiF-carbon layer as an artificial cathodic electrolyte interphase through encapsulation of a cathode with carbon monofluoride, ACS Appl. Mater. Interfaces, 13, 31741-31748 (2021). https://doi.org/10.1021/acsami.1c08419