Browse > Article
http://dx.doi.org/10.9719/EEG.2020.53.4.441

Changes of Soil Properties through the Remediation Processes and Techniques for the Restoration of Remediated Soils  

Lee, Sang-Woo (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University)
Lee, Woo-Chun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University)
Lee, Sang-Hun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University)
Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University)
Publication Information
Economic and Environmental Geology / v.53, no.4, 2020 , pp. 441-477 More about this Journal
Abstract
There have been raised other environmental issues related to remediated soils piled up in numerous carry-out processing facilities because a considerable quantity of them have been produced every year, but most of them have not been relevantly reused or recycled. Thus, this article reports the trend of researches on the development of techniques to restore the quality of remediated soils to activate their reuse and recycling. Firstly, the tendency of change in soil properties through remediation processes was looked over, and then the degradation of soil quality was characterized according to the type of remediation processes. Besides, the direction of policy to promote the reuse and recycling of remediated soils was introduced, and finally, the future works needed were suggested. This article was prepared based on the results of the survey of domestic and foreign literature. A number of literature were reviewed to scrutinize the change of soil properties due to remediation processes and diverse techniques for the amendment and restoration of remediated soils. Furthermore, the policies related to the reuse and recycling of remediated soils were arranged with the reference of the first and second versions of the Soil Conservation Master Plan of Korea. The literature survey focused on three kinds of remediation technologies, such as land farming, soil washing, and thermal desorption, which were most frequently used so far in Korea. The results indicate that the tendency of change in soil properties was significantly different depending on the type of remediation processes applied, and the degradation characteristics of soil quality were also totally different between them. The soil amendment and restoration can be categorized as three techniques depending on the type of substances used, such as inorganic, organic, and biological ones. Diverse individual materials have been used, and the soil properties improved or enhanced were dependent on the type of specific materials utilized. However, few studies on the restoration of soil qualities degraded during the remediation processes have not been carried out so far. The second Soil Conservation Master Plan states the quality certification and target management system of remediated soils, and it is expected that their reuse and recycling will be facilitated hereafter. With the consideration of the type of remediation processes implemented and public utility, the restoration technologies of remediated soils should be developed for the vitalization of their reuse and recycling. Besides, practical and specific measures should be taken to support the policy specified in the second Soil Conservation Master Plan and to promote reuse/recycling of remediated soils.
Keywords
contaminated soils; remediation processes; change of soil properties; restoration techniques; soil quality;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Hooda, P. S. and Alloway, B. J. (1996) The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils. J. Agric. Sci., v.127, p.289-294.   DOI
2 Houben, D., Pircar, J. and Sonnet, P. (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability, J. Geochem. Explor., 123, 87-94(2012).   DOI
3 Hu, C. and Qi, Y. (2013) Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron., v.46, p.63-67.   DOI
4 Hu, X., Xue, Y., Long, L. and Zhang, K. (2018) Characteristics and batch experiments of acidand alkali-modified corncob biomass for nitrate removal from aqueous solution. Environ, Sci. Pollut. Res., v.25(20), p.19932-19940.   DOI
5 Huang, Y. T., Hseu, Z. Y. and Hsi, H. C. (2011) Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere, v.81, p.1244-1249.   DOI
6 Hwang, S., Moon, H., Gi, B. and Yun, S. (2014) A study on promotion of recycling of cleaned soil and improvement of management system i off-site remediation. Policy report, 2014-05.
7 Im, J. W., Yang, K., Jho, E. H. and Nam, K. P. (2015) Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties. Chemosphere, v.138, p.253-258.   DOI
8 Holland, J. E., Bennett, A. E., Newton, A. C., White, P. J., McKenzie, B. M., George, T. S., Pakeman, R. J., Bqailey, J. S., Fornara, D. A. and Hayes, R. C. (2018) Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ., v.610, p.316-332.   DOI
9 Terefe, T., Mariscal-Sancho, I., Peregrina, F. and Espejo, R. (2008) Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma, v.143(3-4), p.273-280.   DOI
10 Tersic, T. and Gosar, M. (2012) Comparison of elemental contents in earthworm cast and soil from a mercurycontaminated site (Idrija area, Slovenia). Sci. Total Environ., v.430, p.28-33.   DOI
11 Thomaz, E. L. and Fachin, P. A. (2014) Effects of heating on soil physical properties by using realistic peak temperature gradients. Geoderma, v.230-231, p.243-249.   DOI
12 TIFAC (2001) Technology linked business opportunity publications. Non Conventional Sources of Plant Nutrient & Soil Conditioners to Enhance Agricultural Productivity, Code no. TMS1551.
13 Tahir, S. and Marschner, P. (2016) Clay amendment to sandy soil effect of clay concentration and ped size on nutrient dynamics after residue addition. J. Soils Sediments, v.16, p.2072-2080.   DOI
14 Ministry of Environment (2020) The second Soil Environment Conservation Master Plan.
15 Zhen, Z., Liu, H., Wang, N., Guo, L., Meng, J., Ding, N., Wu, G. and Jiang, G. (2014) Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS One, v.9(10), e108555p..   DOI
16 Zayani, K., Bousnina, H., Mhiri, A., Hartmann, R. and Cherif, H. (1996) Evaporation in layered soils under different rates of clay amendment. Agric. Water Manage., v.30, p.143-154.   DOI
17 Koh, I. H., Kim, G. S., Chang, Y. Y., Yang, J. K. and Moon, D. H. (2017) Characteristics of agricultural paddy soil contaminated by lead after bench-scale in-situ washing with $FeCl_3$. J. Soil Groundw. Environ., v.22(1), p.18-26.   DOI
18 KEITI (Korea environmetal industry & technology institute) (2019) Trend analysis and DB construction for soil, groundwater technology, industry, and manpower statistics.
19 Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G. and Heitman, J. L. (2020) The effects of compost incorporation on soil physical properties in urban soils - A concise review, J. Environ. Manage., v.261, 110209p.   DOI
20 Ministry of Environment (2009) The first Soil Environment Conservation Master Plan.
21 Mishra, P., Prasad, S. S., Babu, B. M. and Varalakshmi, L. (2001) Bentonite as an ameliorant in an alfisol a laboratory study. J. Irrig. Drain. Eng., v.127(2), p.118-122.   DOI
22 Mohammadshirazi, F., Brown, V. K., Heitman, J. L. and McLaughlin, R. A. (2016) Effects of tillage and compost amendment on infiltration in compacted soils. J. Soil Water Conserv., v.71(6), p.443-449.   DOI
23 Mojid, M. A., Wyseure, G. C. L. and Mustafa, S. M. T. (2012) Water use efficiency and productivity of wheat as a function of clay amendment. Environ. Control Biol., v.50, p.347-362.   DOI
24 Moon, D. H., Chang, Y. Y., Lee, M. H., Cheong, K. H., Ji, W. H., Koh, I. H., Choi, Y. L. and Park, J. H. (2016) Soil washing of heavy metal contaminated paddy soil using a $FeCl_3$ solution. Proc. Int. Res. Symp. Eng. Technol., Singapore, p.152-153.
25 Mudrak, O., Uteseny, K. and Frouz, J. (2012) Earthworms drive succession of both plant and Collembola communities in post-mining sites. Appl. Soil. Ecol., v.62, p.170-177.   DOI
26 Borchardt, G., (1989) Smectites. In: Dixon, J. B., Weed, S. B.(Eds.), Minerals in soil environments, SSSA Book Ser., 1, SSSA. Madison, WI, p.675-727.
27 Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., Cluzeau, D. and Brun, J. J. (2013) A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci., v.64, p.161-182.   DOI
28 Bonanomi, G., Ascoli, R. D, Scotti, R., Gaglione, S. A., Caceres, M.G., Sultana, S., Scelza, R., Rao, M.A. and Zoina, A. (2014) Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels, Agric., Ecosyst. Environ., v.192(1), p.1-7.   DOI
29 Bonnard, M., Devin, S., Leyval, C. and Morel, J. L., (2010) Vasseur, P. The influence of thermal desorption on genotoxicity of multipolluted soil. Ecotoxicol. Environ. Saf., v.73(5), p.955-960.   DOI
30 Bossolani, J. W., Crusciol, C. A. C., Merloti, L. F., Moretti, L. G., Costa, N. R., Tsai, S. M. and Kuramae, E. E. (2020) Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma, v.375(1), 114476p.   DOI
31 Boyer, S. and Wratten, S. D. (2010) The potential of earthworms to restore ecosystem services after opencast mining - a review. Basic Appl. Ecol., v.11, p.196-203.   DOI
32 Butt, K. R. (1999) Inoculation of earthworms into reclaimed soils: the UK experience. Land Degrad. Dev., v.10, p.565-575.   DOI
33 Rivas-Perez, I. M., Fernandez-Sanjurjo, M. J., Nunez-Delgado, A., Monterroso Martinez, C., Macias- Vazquez, F. and Alvarez-Rodriguez, E. (2019) Efficacy of two different reclamation strategies to improve chemical properties and to reduce Al toxicity in a lignite mine dump during a 20-year period, Land Degrad. Dev., v.30, p.658-669.   DOI
34 Ram, L. C., Singh, S., Masto, R. E., Jha, S. K., Tripathi, R. C., Sinha, A. K., Srivastava, N. K. and Selvi, V. A. (2010) Potential of Indian Fly ashes as Soil Ameliorant: State-of-the-Art, 25th Int. Conf. Solid Waste Techn. and Manag., Philadelphia USA, March p.14-17.
35 Randhawa, P. S., Condron, L. M., Di, H. J., Sinaj, S. and McLenaghen, R. D. (2005) Effect of green manure addition on soil organic phosphorus mineralisation. Nutr. Cycl. Agroecosyst., v.73, p.181-189.   DOI
36 Rivas-Perez, I. M., Fernandez-Sanjurjo, M. J., Nunez-Delgado, A., Macias, F., Monterroso, C. and Alvarez-Rodriguez, E. (2016) Aluminum fractionation and speciation in a coal mine dump: twenty years of timecourse evolution. Geoderma, v.273, p.45-53.   DOI
37 Roelcke, M., Han, Y., Schleef, K. H., Zhu, J. G., Liu, G., Cai, Z. C. and Richter, J. (2004) Recent trends and recommendations for nitrogen fertilization in intensive agriculture in eastern China. Pedosphere, v.14, p.449-460.
38 Roh, Y., Edwards, N. T., Lee, S. Y., Stiles, C. A., Armes, S. and Foss, J. E. (2000) Thermal treated soil for mercury removal: soil and phytotoxicity tests. J. Environ. Qual., v.29(2), p.415-424.   DOI
39 Ram, L. C., Masto, R. E., Singh, S., Tripathi, R. C., Jha, S. K., Srivastava, N. K., Sinha, A. K., Selvi, V. A. and Sinha, A. (2011) An Appraisal of Coal Fly Ash Soil Amendment Technology (FASAT) of Central Institute of Mining and Fuel Research (CIMFR), World Acad. Sci. Eng. Technol., v.76, p.703-714.
40 Kristensen, A. H., Henriksen, K., Mortensen, L., Scow, K.M. and Moldrup, P. (2010) Soil physical constraints on intrinsic biodegradation of petroleum vapors in a layered subsurface. Vadose Zone J., v.9(1), p.137-147.   DOI
41 Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I. J., Schuth, C. and Graber. E. R. (2018) Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Sci. Total Environ., v.626, p.953-961.   DOI
42 Kumari, A., Lal, B. and Rai, U. N. (2016) Assessment of native plant species for phytoremediation of heavy metals growing near NTPC sites, Kahalgaon, India. Int. J. Phytorem., v.18(6), p.592-597.   DOI
43 Lazanyi, J. (2005) Effects of bentonite on the water budget of sandy soil. Culture Technology for Wheat and Corn. Symp. Int., July p.7-8.
44 Ko, I. W., Chang, Y. Y., Lee, C. H. and Kim, K. W. (2005) Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J. Hazard. Mater., v.127(1), p.1-13.   DOI
45 Tripathi, R. C., Masto, R. E. and Ram, L. C. (2009) Bulk use of pond ash for cultivation of wheat maize eggplant crops in sequence on a fallow land Resources. Conserv. Rec., v.54, p.134-139.   DOI
46 Un, H., Han, M., Seo, K. and Seo, M. (2012) Microbial fertilizer for soil improvement using bottom ash carrier, Korean patent, 10-2012-0009080.
47 United States Environmental Protection Agency (US EPA) (2007) Report on the Environment: Science Report.
48 USEPA (2013) Literature Review of Contaminants in Livestock and Poultry Manure andImplications for Water Quality.
49 Mattigod, S. V., Rai, D., Eary, L. F. and Ainsworth, C. C. (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. J. Environ. Qual., v.19, p.188-201.   DOI
50 Murphy, P. N. C. (2007) Lime and cow slurry application temporarily increases organic phosphorus mobility in an acid soil. Eur. J. Soil. Sci.,v. 58, p.794-801.   DOI
51 Zhu, J. C., Zhang, Z. Q., Fan, Z. M. and Li, H. R. (2014) Biogas potential, cropland load and total amount control of animal manure in China. J. Agrometeorol., v.33, p.435-445.
52 Zihms, S. G., Switzer, C., Irvine, J. and Karstunen, M. (2013) Effects of high temperature processes on physical properties of silica sand, Eng. Geol., 164, 139-145.   DOI
53 Zoca, S. M. and Penn, C. (2017) An important tool with no instruction manual: a review of gypsum use in agriculture. Adv. Agron., v.144, p.1-44.   DOI
54 Zupanc, V., Kastelec, D., Lestan, D. and Grcman, H. (2014) Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives. Environ. Pollu., v.186, p.56-62.   DOI
55 Czaban, J. and Siebielec, G. (2013) Effects of bentonite on sandy soil chemistry in a long-term plot experiment (II); effect on pH, CEC, and macro-and micronutrients. Pol. J. Environ. Stud., v.22(6), p.1669-1676.
56 Eviner, V. and Chapin, F. (2011) Plant species provide vital ecosystem functions for sustainable agriculture, rangeland management, and restoration. Calif. Agric., v.55(6), p.54-60.   DOI
57 Heo, H. J. and Lee, M. H. (2002) Surfactant-enhanced soil washing using tween and tergitol series surfactants for Kuwait soil heavily contaminated with crude oil. J. Soil Groundw. Environ., v.20(5), p.26-33.   DOI
58 Veeresh, H., Tripathy, S., Chaudhuri, D., Ghosh, B. C., Hart, B. and Powell, M. (2003) Changes in physical and chemical properties of three soil types in India as a result of amendment with fly ash and sewage sludge. Environ. Geol., v.43, p.513- 520.   DOI
59 Biache, C., Mansuy-Huault, L., Faure, P., Munier-Lamy, C. and Leyval, C. (2008) Effects of thermal desorption on the composition of two coking plant soils: impact on solvent extractable organic compounds and metal bioavailability, Environ. Pollut., v.156(3), p.671-677.   DOI
60 Usman, K., Khan, S. Ghulam, S., Khan, M. U., Khan, N., Khan, M. A. and Khalil, S. K. (2012) Sewage sludge: an important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci., v.3, p.1708-1721.   DOI
61 Villa, R. D., Trovó, A. G. and Nogueira, R. F. P. (2010) Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation. J. Hazard. Mater., v.174(1-3), p.770-775.   DOI
62 Vo, T. D. H., Bui, X. T., Lin, C., Nguyen, V. T., Hoang, T. K. D.Nguyen, H. H., Nguyen, P. D., Ngo, H. H. and Guo, W. (2019) A mini-review on shallow-bed constructed wetlands: a promising innovative green roof. Curr. Opin. Environ. Sci. Health, v.12, p.38-47.   DOI
63 Tirado-Corbala, R., Slater, B. K., Dick, W. A., Bigham, J. and Munoz-Munoz, M. (2019) Gypsum amendment effects on micromorphology and aggregation in no-till Mollisols and Alfisols from western Ohio, USA. Geoderma Regional, v.16, p.e00217.   DOI
64 Campisi, T., Abbondanzi, F., Faccini, B., Di Giuseppe, D., Malferrari, D., Coltorti, M., Laurora, A. and Passaglia, E. (2016) Ammonium-charged zeolitite effects on crop growth and nutrient leaching: greenhouse experiments on maize (Zea mays). Catena. v.140, p.66-76.   DOI
65 Noori, M., Zendehdel, M. and Ahmadi, A. (2006) Using natural zeolite for improvement of soil salinity and crop yield. Toxicol. Environ. Chem. Rev., v.88(1), p.77-84.   DOI
66 Zhu, H., Yang, J., Yao, R., Wang, X., Xie, W., Zhu, W., Liu, X., Cao, Y. and Tao, J. (2020) Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil. Catena, v.190, p.104527.   DOI
67 Byun, K.W. (2019) Soil conditioner and manufacturing method thereof, Korean patent, 10-2023738.
68 Caires, E. F. and Guimaraes, A. M. (2018) A novel phosphogypsum application recommendation method under continuous no-till management in Brazil. Agron. J., v.110(5), p.1987-1995   DOI
69 Caires, E. F., Joris, H. A. W. and Churka, S. (2011) Longterm effects of lime and gypsum additions on no-till corn and soybean yield and soil chemical properties in southern Brazil. Soil Use Manage., v.27(1), p.45-53.   DOI
70 Capowiez, Y., Dittbrenner, N., Rault, M., Triebskorn, R., Hedde, M. and Mazzia, C. (2010) Earthworm cast production as a new behavioural biomarker for toxicity testing. Environ. Pollut., v.158, p.388-393.   DOI
71 Cebron, A., Beguiristain, T., Faure, P., Norini, M. P., Masfaraud, J. F. and Leyval, C. (2009) Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorptiontreated soil. Appl. Envron. Microbiol., v.75(19), p.6322-6330.   DOI
72 Certinini, G., (2005) Effects of fire on properties of forest soils: a review. Oecologia, v.143(1), p.1-10.   DOI
73 Saviozzi, A., Biasci, A., Riffaldi, F. and Levi-Minzi, R. (1999) Long term effects of farmyard manure and sewage sludge on some soil biochemical characteristics. Biol. Fertil. Soils, v.30, p.100-106.   DOI
74 Ros, M., Klammer, S., Knapp, B., Aichberger, K. and Insam, H. (2006) Longterm effects of compost amendment of soil on functional and structural diversity and microbial activity, Soil Use Manage., v.22, p.209-218.   DOI
75 Rosas, J. M., Vicente, F., Santos, A. and Romero, A. (2013) Soil remediation using soil washing followed by Fenton oxidation. Chem. Eng. J., v.220, p.125-132.   DOI
76 Roubickova, A., Mudrak, O., Frouz, J., (2009) Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fertil. Soils 45, 769-774.   DOI
77 Sax, M. S., Bassuk, N.. van Es, H. and Rakow, D. (2017) Long-term remediation of compacted urban soils by physical fracturing and incorporation of compost. Urban For, Urban Green., v.24, p.149-156.   DOI
78 Schmid, C. J., Murphy, J. A. and Murphy, S. (2017) Effect of tillage and compost amendment on turfgrass establishment on a compacted sandy loam, J. Soil Water Conserv., v.72, p.55-64.   DOI
79 Scullion, J. and Malik, A. (2000) Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biol. Biochem., v.32, p.119-126.   DOI
80 Sertsu, S. M. and Sanchez, P. A. (1978) Effects of heating on some changes in soil properties in relation to an Ethiopian land management practice. Soil Sci. Soc. Am. J., 42(6), p.940-944.   DOI
81 Nunez-Delgado, A. Lopez-Periago, E. and Diaz-Fierros-Viqueira, F. (1997) Breakthrough of inorganic ions present in cattle slurry: soil column trials. Water Res., 31(11), 2892-2898.   DOI
82 Lee, M, H., Chung, S. Y., Kang, D. W., Choi, S. L. and Kim, M. C. (2002) Surfactant enhanced in-situ soil flushing pilot test for the soil and groundwater remediation in an oil contaminated site. J. Soil Groundw. Environ., v.7(4), p.77-86.
83 Lee, M. Y. (2011) Landfarming treatment on aged and freshly diesel-contaminated soils. Ph.D. thesis, Korea University.
84 Najafinezhad, H., Sarvestani, Z. T., Sanavy, S. A. M. M. and Naghavi, H. (2015) Evaluation of yield and some physiological changes in corn and sorghum under irrigation regimes and application of barley residue, zeolite and superabsorbent polymer. Arch. Agron. Soil Sci., v.61(7), p.891-906.   DOI
85 Ndona, R. K., Friedel, J. K., Spornberger, A., Rinnofner, T. and Jezik, K. (2011) Effective microorganisms' (EM): an effective plant strengthening agent for tomatoes in protected cultivation. Biol. Agric. Hortic., v.27, p.189-203(2011).   DOI
86 Ning, C., Gao, P., Wang, B., Lin, W., Jiang, N. and Cai, K. (2017) Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric., v.16(8), p.1819-1831.   DOI
87 Nunez-Delgado, A. Lopez-Periago, E. and Diaz-Fierros-Viqueira, F. (2002) Chloride, sodium, potassium and faecal bacteria levels in surface runoff and subsurface percolates from grassland plots amended with cattle slurry, Bioresour. Technol., 82(3), 261-271.   DOI
88 Lee, S., Kim, Y., Ham, S,. Lim, H., Choi, Y. and Park, K. (2013) Effect of Soldier Fly Casts Mixed Soil on Change of Soil Properties in Root Zone and Growth of Zoysiagrass. Weed Turf. Sci., v.2(3), p.298-305.   DOI
89 Butt, K. R. (2008) Earthworms in soil restoration: lessons learned from United Kingdom case studies of land reclamation. Restor. Ecol., v.16, p.637-641.   DOI
90 Ros, M., Hernandez, M. T. and Garcia, C. (2003) Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem., v.35, p.463-469.   DOI
91 Lehmann, J. (2012) Biochar for environmental management: an introduction Biochar. Environ. Manag. Sci. Tech., v.25, p.15801-15811.
92 Li, H. Y., Wang, H., Wang, H. T., Xin, P. Y., Xu, X. H., Ma, Y., Liu, W. P., Teng, C. Y., Jiang, C. L., Lou, L. P., Arnold, W., Cralle, L., Zhu, Y. G., Chu, J. F., Givert, J. A. and Zhang, Z. J. (2018) The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome, v.6, p.187.   DOI
93 Li, M., Ren, L., Zhang, J., Luo, L., Qin, P., Zhou, Y., Huang, C., Tang, J., Huang, H. and Chen, A. (2019) Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. Sci. Tot. Environ., v.651, p.2166-2174.   DOI
94 Li, R. R. Duan, N. and Zhang, Y. H., (2017) Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: nutrients reuse and biogas enhancement. Waste Manag., v.70, p.247-254.   DOI
95 Lee, D. S., Lim, S. S., Park, H. J., Yang, H. I., Park, S. I., Kwak, J. H. and Choi, W. J. (2019) Fly ash and zeolite decrease metal uptake but do not improve rice growth in paddy soils contaminated with Cu and Zn. Environ. Inter., v.129, p.551-564.   DOI
96 Walker, R. F. (2003) Comparison of organic and chemical soil amendments used in the reforestation of a harsh Sierra Nevada site. Rest. Ecol., v.11, p.446-474.   DOI
97 Chen, S. (2015)Evaluation of Compost Topdressing, Compost Tea and Cultivation on Tall Fescue Quality, Soil Physical Properties and Soil Microbial Activity. MS Thesis. Department of Plant Sciences and Landscaping Architecture, University of Maryland, College Park, College Park, MD.
98 Nwaichi, E.O. and Chuku, L.C. (2017) Biological Soil Quality Indicators and Conditioners in a Plant- Assisted Remediation of Crude Oil Polluted Farmland. J. Environ. Prot., v.8(13), DOI: 10.4236/jep.2017.813100.
99 O'Brien, P. L., DeSutter, T. M. and Wick, F. F. (2018) Thermal remediation alters soil properties - a review, J. Environ. Manage., v.206, p.826-835.   DOI
100 Nair, A. and Ngouajio. M. (2012) Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol., v.58, p.45-55.   DOI
101 Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B. and Cayuela, M. L. (2018) The long-term role of organic amendments in building soil nutrient fertility: a metaanalysis and review. Nutr. Cycl. Agroecosyst., v.111, p.103-125.   DOI
102 Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D. and Julson, J. L. (2014) Effect of biochar on chemical properties of acidic soil. Archives Agron. Soil Sci., v.60(3), p.393-404.
103 Choi, H. S., Jung, J. S., Kuk, Y. I., Choi, I. Y. and Jung, S. K. (2019) Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes. J. Korea Organic Resources Recycling Association, v. 27(4), p.15-24.   DOI
104 Choi, S. I., Lee, G. T. and Yang, J. K. (2009) Soil pollution management and restoration. Donghwa Tech. Publish., 209p.
105 Crogger, C. G. (2005) Potential compost benefits for restoration of soils disturbed by urban development, Compost Sci. Util., v.13, p.243-251.   DOI
106 Curry, J. P. and Boyle, K. E. (1987) Growth rates, establishment, and effects on herbage yield of introduced earthworms in grassland on reclaimed cutover peat. Biol. Fertil. Soils, v.3, p.95-98.   DOI
107 She, W. W., Bai, Y. X., Zhang, Y. Q., Qin, S. G., Feng, W., Sun, Y. F., Zheng, J. and Wu, B. (2018) Resource availability drives responses of soil microbial communities to short-term precipitation and nitrogen addition in a desert shrubland. Front. Microbiol., v.9, 186p.   DOI
108 Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., Cross, A. and Haszeldine, S. (2012) Sustainable gasification-biochar systems? a case-study of rice-husk gasification in Cambodia, part I: context, chemical properties, environmental and health and safety issues, Energy Policy, v.42, p.49-58.   DOI
109 Shao, Y. C., Zhang, Y. L., Li, Y., Yan, Y. D. and An, Y. C. (2005) Study of effect on using natural minerals to improve soil in irrigating brackish water. J. Soil Water Conserv., v.19, p.100-103 (In Chinese).
110 Sharma, B., Sarkar, A., Singh P. and Singh R. P. (2017) Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manage., v.64, p.117-132.   DOI
111 Shi, Y., Chen, X. and Shen, S. M. (2002) Mechanisms of organic cementing soil aggregate formation and its theoretical models. Chin. J. Appl. Ecol., v.13, p.1495-1498 (In Chinese).
112 Shi, Z., Tang, Z. and Wang, C. (2019) Effect of phenanthrene on the physicochemical properties of earthworm casts in soil. Ecotox. Environ. Saf., v.168, p.348-355.   DOI
113 Shin, D., Jo, Y. T., Park, S. J. and Park, J. H. (2019) Acidic Soil Improvement and Physicochemical Characteristics Using Red-mud and Biochar. J. Korean Soc. Environ. Eng., v.41(9), p.483-493.   DOI
114 Wang, S. Y., Kuo, Y. C., Hong, A., Chang, Y. M. and Kao, C. M. (2016a) Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemospher, v.164, p.558-567.   DOI
115 Wang, G. Y., Zhang, S. R., Xu, X. X., Zhong, Q. M., Zhang, C. E., Jia, Y. X., Li, T., Deng, O. P. and Li, Y. (2016b) Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ., v.569-570, p.557-568.   DOI
116 Wang, G., Zhang, S., Zhong, Q., Xu, X., Li, T., Jia, Y,, Zhang, Y., Peijnenburg, W. J. G. M. and Vijver, M. G. (2018) Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Sci. Total Environ., v.625, p.1021-1029.   DOI
117 Wang, H., Feng, L. and Chen, Y. (2012) Advances in biochar production from wastes and its applications. Chem. Ind. Eng. Prog., v.63, p.3727-3740.
118 Wardle, D. A. (2002) Communities and Ecosystems: Linking the Aboveground and Belowground Components, 34, Princeton University Press.
119 Welp, G. (1999) Inhibitory effects of the total and watersoluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol. Ferti. Soils, v.30(1-2), p.132-139.   DOI
120 Vondrackova, S., Hejcman, M., Tlustos, P. and Szakova, J. (2013) Effect of quick lime and dolomite application on mobility of elements (Cd, Zn, Pb, As, Fe, and Mn) in contaminated Soils. Pol. J. Environ. Stud., v.22, p.577-589.
121 Dittbrenner, N., Triebskorn, R., Moser, I. and Capowiez, Y. (2010) Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa). Ecotoxicology, v.19, p.1567-1573.   DOI
122 Diacono, M. and Montemurro, F. (2010) Long-term effects of organic amendments on soil fertility: a review. Agron. Sustain. Dev., v.30, p.401-422.   DOI
123 Chaudhary, D. K., Bajagain, R., Jeong, S. W. and Kim, J. (2019) Development of a bacterial consortium comprising oil-degraders and diazotrophic bacteria for elimination of exogenous nitrogen requirement in bioremediation of diesel-contaminated soil. World J. Microbiol. Biotechnol., v.35(7), p.99.   DOI
124 Shaaban, M. Peng, Q. Bashir, S. Wu, Y. Younas, A. Xu, X., Rashti, M.R., Abid, M., Zafar-ul-Hye, M. Nunez-Delgado, A., Horwath, W.R., Jiang, Y., Lin, S. and Hu, R. (2019) Restoring effect of soil acidity and Cu on $N_2O$ emissions from an acidic soil. J. Environ. Manage., v.250(15), 109535p.   DOI
125 Lim, M. W., Von Lau, E. and Poh, P. E. (2016a) A comprehensive guide of remediation technologies for oil contaminated soil e present works and future directions. Mar. Pollut. Bull., v.109, p.14-45.   DOI
126 Olson, N. C., Gulliver, J. S., Nieber, J. L. and Kayhanian, M. (2013) Remediation to improve infiltration into compact soils. J. Environ. Manag., v.117, p.85-95.   DOI
127 Onagwu, B. O. (2019) Organic amendments applied to a degraded soil: short term effects on soil quality indicators. African J. Agric. Res., v.14(4), p.218-225.   DOI
128 Othman, N., Irwan, J. M., Hussain, N. and Abdul, S. T. (2011) Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: an overview. Int. J. Sustain. Constr. Eng. Technol., v.2(2), p.48-53.
129 Ozbahce, A., Tari, A. F., Gonulal, E. and Simsekli, N. (2018) Zeolite for enhancing yield and quality of potatoes cultivated under water-deficit conditions. Potato Res., p.1-13.
130 Dinesh, R., Srinivasan, V., Hamza, S. and Manjusha, A. (2010) Shortterm incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol., v.101, p.4697-4702.   DOI
131 Dixon, J. B. (1989) Kaolin and serpentine group minerals. In: Dixon, J. B., Weed, S. B.(Eds.), Minerals in soil environments, SSSA Book Ser., 1. SSSA, Madison, WI, p.467-525.
132 Doran, J. W., Fraser, D. G., Culik, M. N. and Liebhardt, W. C. (1988) Influence of alternative and conventional agricultural management on soil microbial process and nitrogen availability. Am. J. Altern. Agric., v.2, p.99-106.   DOI
133 During, R. A. and Gath, S. (2002) Utilization of municipal organic wastes in agriculture: where do we stand, where will we go?. J. Plant Nutr. Soil Sci., v.165, p.544-556.   DOI
134 Jeon, W., Seong, K., Lee, J., Oh, I., Lee, Y. and Ok, Y. S. (2010) Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth. Korean J. Soil Sci. Fert., v.43(4), p.484-489.
135 Jayasinghe, G. Y. and Tokashiki, Y. (2012) Influence of coal fly ash pellet aggregates on the growth and nutrient composition of Brassica campestris and physicochemical properties of greysoils in Okinawa. J. Plant Nutr., v.35, p.453-470.   DOI
136 Jelusic, M. and Lestan, D., (2014) Effect of EDTA washing of metal polluted garden soils Part I: toxicity hazards and impact on soil properties. Sci. Total Environ., v.475, p.132-141.   DOI
137 Jelusic, M., Vodnik, D., Macek, I. and Lestan, D. (2014) Effect of EDTA washing of metal polluted garden soils Part II: can remediated soil be used as a plant substrate?. Sci. Total Environ., v.475, p.142-152.   DOI
138 Jeong, S. W. (2019) Estimation of remediation cost for reducing cancer and non-cancer risk of a fuel contaminated site. J. Korean Soc. Environ. Eng., v.41(5), p.286-291.   DOI
139 Jez, E. and Lestan, D. (2016) EDTA retention and emissions from remediated soil. Chemosphere, v.151, p.202-209.   DOI
140 Jho, E. H., Ryu, H., Shin, D., Kim, Y. J., Choi, Y. J. and Nam, K. P. (2014) Prediction of landfarming period using degradation kinetics of petroleum hydrocarbons: test with artificially contaminated and field-aged soils and commercially available bacterial cultures. J. Soil. Sediment., v.14(1), p.138-145.   DOI
141 Logan, T. J., Lindsay, B. J., Goins, L. E. and Ryan, J. A. (1997) Field assessment of sludge metal bioavailability to crops: sludge rate response. J. Environ. Qual. v.26, p.534-550.   DOI
142 Lim, S. S., Lee, D. S., Kwak, J. H., Park, H. J., Kim, H. Y. and Choi, W. J. (2016b) Fly ash and zeolite amendments increase soil nutrient retention but decrease paddy rice growth in a low fertility soil. J. Soils Sediments, v.16(3), p.756-766.   DOI
143 Liu, B., Morkved, P. T., Frostegard, A. and Bakken, L. R. (2010) Denitrification gene pools, transcription and kinetics of NO, $N_2O$ and $N_2$ production as affected by soil pH. FEMS Microbiol. Ecol., v.72(3), p.407-417.   DOI
144 Liu, X. Y., Rashti, M. R., Esfandbod, M., Powell, B. and Chen, C. R. (2018) Liming improves soil microbial growth, but trash blanket placement increases labile carbon and nitrogen availability in a sugarcane soil of subtropical Australia. Soil Res., v.56(3), p.235-243.   DOI
145 Logsdon, S. D., Sauer, P. A. and Shipitalo, M. J. (2017) Compost improves urban soil and water quality. J. Water Resour. Protect., v.9, p.345-357.   DOI
146 López-Periago, E. Nunez-Delgado, A. and Diaz-Fierros, F. (2002) Attenuation of groundwater contamination caused by cattle slurry: a plot-scale experimental study, Bioresour. Technol., v.84(2), p.105-111.   DOI
147 Lim, J. E., Ahmad, M., Usman, A. R., Lee, S. S., Jeon, W., Oh, S., Yang, J. E. and Ok, Y. S. (2013) Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environ. Earth Sci., v.69(1), p.11-20.   DOI
148 Xie, T., Li, Y., Dong, H., Liu, Y., Wang, M. and Wang, G. (2019) Effects and mechanisms on the reduction of lead accumulation in rice grains through lime amendment, Ecotox. Environ. Saf., v.173(30) p.266-272.   DOI
149 Pandey, V. C. and Singh, N. (2010) Impact of fly ash incorporation in soil systems. Agric. Ecosyst. Environ., v.136, p.16-27.   DOI
150 Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C. W., Hashimoto, Y., Hou, D., Bolan, N. S., Rinklebe, J. and Oka, Y. S. (2020) Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Envrion. Int., v.134, 105046p.   DOI
151 Pang, Z., Tayyab, M., Kong, C., Hu, C., Zhu, Z., Wei, X. and Yuan, Z. (2019) Liming positively modulates microbial community composition and function of sugarcane fields. Agronomy, v.9(12), 808p.   DOI
152 Pape, A., Switzer, C., McCosh, C. and Knapp, C. W. (2015) Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma, v.243-244, p.1-9.   DOI
153 Oh, T.G. (2004) Phytoremediation of diesel fuel contaminated soil using herbaceous plants. Master thesis, Korea University.
154 Singh, R. P. and Agrawal, M. (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, v.67, p.2229-2240.   DOI
155 Dzantor, E. K., Pettigrew, H., Adeleke, E. and Hui, D. (2013) Use of Fly Ash as Soil Amendment for Biofuel Feedstock Production with Concomitant Disposal of Waste Accumulations. WOCA, World of Coal Ash Association, Lexington, KY, April p.22-25.
156 Edwards, C. A. and Bohlen, P. J. (1996) Biology and Ecology of Earthworms. The Influence of Environmental Factors on Earthworms, Champman & Hall, UK, London, p.196-229.
157 Diacono, M. and Montemurro, F. (2018) Long-term effects of organic amendments on soil fertility: a review. Agron. Sustain. (2010) Dev., v.30, p.401-422, in: Ayer, N.W. and Dias, G. Supplying renewable energy for Canadian cement production: life cycle assessment of bioenergy from forest harvest residues using mobile fast pyrolysis units. J. Clean. Prod., v.175, p.237-25.   DOI
158 Abayneh, A. B. and Quanyuan, C. (2018) Surfactant enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: A Review, Pedosphere, 28(3), 383-410.   DOI
159 Joghan, A. K., Ghalavand, A., Aghaalikhani, M., Gholamhoseini, M. and Dolatabadian, A. (2012) How organic and chemical nitrogen fertilizers, zeolite, and combinations influence wheat yield and grain mineral content. J. Crop Improv., v.26(1), p.116-129.   DOI
160 Izquierdo, M. and Querol, X. (2012) Review article - leaching behavior of elements from coal combustion fly ash: an overview. Int. J. Coal Geol., v.94, p.54-66.   DOI
161 Singh, R. P. and Agrawal, M. (2008) Potential benefits and risks of land application of sewage sludge. Waste Manage., v.28, p.347-358.   DOI
162 Singh, R. P. and Agrawal, M. (2010a) Biochemical and physiological responses of Rice (Oryza sativa L.) grown on different sewage sludge amendments rates. Bull, Environ. Contam. Toxcol., v.23, p.606-612.   DOI
163 Singh, R. P. and Agrawal, M. (2010b) Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Eng., v.36, p.969-972.   DOI
164 Singh, R. P., Sharma, B., Sarkar, A., Sengupta, C., Singh, P. and Ibrahim, M. H. (2014) Biological responses of agricultural soils to fly ash amendments. Rev. Environ. Contam. Toxicol., v.232, p.45-60.   DOI
165 Singh, S., Singh, J. and Vig, A. P. (2016) Earthworm as ecological engineers to change the physico-chemical properties of soil: Soil vs vermicast. Ecol. Eng., v.90, p.1-5.   DOI
166 Sizmur, T., Palumbo-Roe, B. and Hodson, M. E. (2011) Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost. Environ. Pollut., v.159, p.1852-1860.   DOI
167 Yao, Y., Gao, B., Zhang, M., Inyang, M. and Zimmerman, A. R. (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, v.89, p.1467-1471.   DOI
168 Xu, J. and Shen, G. (2011) Growing duckweed in swine wastewater for nutrient recovery and biomass production, Bioresour. Technol., v.102(2), p.848-853.   DOI
169 Yang, H., Kim, D., Ahn, B.W. and Lee, J. (2014) Impacts of Green Manure Crop and Charcoal Applications on Ginger Growth and Soil Properties, Korean J Organic Aagi., v.22(3) p.503-519.   DOI
170 Yang, J. E. (2003) Development of liquid bio-fertilizer production technology for soil amendment, R&D Program for Small and Medium-sized Enterprises.
171 Yi, Q., Zhao, Y., Huang, Y., Wei, G., Hao, Y., Feng, J., Mohamed, U., Pourkashanian, M., Nimmo, W. and Li, W. (2018) Life cycle energy-economic $CO_2$ emissions evaluation of biomass/coal, with and without $CO_2$ capture and storage, in a pulverized fuel combustion power plant in the United Kingdom. Appl. Energy, v.225, p.258-272.   DOI
172 Yi, Y. M. (2016) Quality and health assessment of contaminated soil after remediation and amendment treatment. Ph. D. thesis, Yukyong National University.
173 Witters, N., Mendelsohn, R. O., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E., Tack, F., Carleer, R. and Vangreonsveld, J. (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenerg., v.39, p.454-469.   DOI
174 Garcia-Corona, R., Benito, E., Blas, E. D. and Varela, M. E. (2004) Effects of heating on some physical properties related to its hydrological behaviour in two north-western Spanish soils. Int. J. Wildland Fire, v.13(2), p.195-199.   DOI
175 Galang, M. A., Markewitz, D. and Morris, L. A. (2010) Soil phosphorus transformations under forest burning and laboratory heat treatments. Geoderma, v.155(3-4), p.401-408.   DOI
176 Garcia, C., Hernandez, T., Pascual, J. A., Moreno, J. L. and Ros, M. (2000) Microbial activity in soils of SE Spain exposed to degradation and desertification processes: strategies for their rehabilitation. In: Garcia, C., Hernandez, T. (Eds.), Research and Perspectives of Soil Enzymology in Spain. CEBAS, CSIC, Murcia, p.93-143.
177 Garcia, C., Hernandez, T., Pascual, J. A., Moreno, J. L. and Ros, M. (2000) Microbial activity in soils of SE Spain exposed to degradation and desertification processes-strategies for their rehabilitation. In: C. Garcia, M. T. Hernandez, (Eds.), Research and Perspectives of Soil Enzymology in Spain. Centro de Edafologia y Biologia Aplicada del Segura, Murcia, Spain, p.41-143.
178 Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S. and Ok, Y. S. (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, v.99, p.19-33.   DOI
179 Adams, R. H. and Guzman-Osorioheavily, F. J. (2008) Evaluation of land farming and chemico-biological stabilization for treatment of contaminated sediments in a tropical environment. Int. J. Environ. Sci. Tech., v.5(2), p.169-178.   DOI
180 Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. and Straughan, I. A. (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystem: a review. J. Environ. Qual., v.9, p.333-344.   DOI
181 Ahmaruzzaman, M. (2010) A review on the utilization of fly ash. Prog. Energy Combust. Sci., v.36, p.27-363.   DOI
182 Fraser, P. M., Beare, M. H., Butler, R. C., Harrison-Kirk, T. and Piercy, J. E. (2003) Interactions between earthworms (Aporrectodea caliginosa), plants and crop residues for restoring properties of a degraded arable soil. Pedobiologia, v.47, p.870-876.   DOI
183 Slater, L. and Lesmes, D. (2002) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour. Res., v.38(10), p.31-1-31-13.   DOI
184 Sierra, M. J., Milla, N, R., Lopez, F.A., Alguacil, F. J. and Canadas, I. (2016) Sustainable remediation of mercury contaminated soils by thermal desorption. Environ. Sci. Pollut. Res. int., v.23(5), p.4898-4907.   DOI
185 Lukić, B., Panico, A., Huguenot, D., Massimiliano, F., van Hullebusch, E. D. and Esposito, G. (2017) A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environ. Technol. Rev., 6(1), 94-116.   DOI
186 Paul, E. A. and Clark, F. E. (1989) Soil microbiology and biochemistry, Academic Press, San Diego, California, p.32-46.
187 Peng, Y. and Sun, Y. (2012) Resources characteristics and market situation of bentonites at home and abroad. Metal Mine, v.4, p.95-99.
188 Pen-Mouratov, S., Shukurov, N., Yu, J., Rakhmonkulova, S., Kodirov, O., Barness, G., Kersten, M. and Steinberger, Y. (2014) Successive development of soil ecosystems at abandoned coal-ash landfills. Ecotoxicology, v.23(5), p.880-897.   DOI
189 Getachew, A., Bass, A. M., Nelson, P. N. and Bird, M. I. (2016) Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ., v.543, p.295-306.   DOI
190 Gill, J. S., Tisdall, J., Kusnarta Sukartono, I. G. M., and McKenzie, B. M., (2004) Physical properties of a clay loam soil mixed with sand. In: Super Soil 2004: 3rd Australian & New Zealand Soils Conference, University of Sydney, Australia.
191 Jung, B. G. Ro, G. H. and Sung, N. C. (2009) Removal characteristics of TPHs and heavy metals in contaminated soil with ultrasonic washing. J. Eviron. Sci. Intl., v.18(4), p473-478.
192 Aleem, M., Hanna, N. and Sabry, S. (2000) Relationship between wheat root characteristics and grain yield in sandy and clay soils. Ann. Agric. Sic., 3(Special), p.977-995.
193 Ali, H., Khan, E. and Sajad, M. A. (2013) Phytoremediation of heavy metals concepts and applications. Chemosphere, v.91(7), p.869-881(2013).   DOI
194 Al-Omran, A. M., Sheta, A. S., Falatah, A. M. and Al-Harbi, A. R. (2005) Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits. Agric. Water Manage., v.73, p.43-55.   DOI
195 Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. and Murphy, D. V. (2012) Biocharmediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem., v.45, p.113-124.   DOI
196 Jouquet, P. Blanchart, E. and Capowiez, Y. (2014) Utilization of earthworms and termites for the restoration of ecosystem functioning. Appl. Soil Ecol., v.73, p.34-40.   DOI
197 Kaiser, K. and Zech, W. (2000) Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J. Plant Nutr. Soil Sci., v.163(5), p.531-535.   DOI
198 Karhu, K., Mattila, T., Bergstrom, I. and Regina, K. (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short term pilot field study. Agric. Ecosyst. and Environ., v.140(1-2), p.309-313.   DOI
199 Kaurin, A., Cernilogar, Z. and Lestan, D. (2018) Revitalisation of metal-contaminated, EDTA-washed soil by addition of unpolluted soil, compost and biochar: Effects on soil enzyme activity, microbial community composition and abundance. Chemosphere, v.193, p.726-736.   DOI
200 Luo, Y., Dungait, J. A. J., Zhao, X., Brookes, P. C., Durenkamp, M., Li, G. and Lin, Q. (2018) Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil, Land Degrad. Dev., 29, 2183-2188.   DOI
201 Ma, F., Zhang, Q., Xu, D., Hou, D., Li, F. and Gu, Q. (2014) Mercury removal from contaminated soil by thermal treatment with $FeCl_3$ at reduced temperature. Chemosphere, v.117, p.388-393.   DOI
202 Mahar, A., Ping, W., Ronghua, L. and Zhang, Z. (2015) Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere, 25(4), 555-568.   DOI
203 Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S. Shahid, M., Abid, M. and Ullah, S. (2017) Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr., v.17, p.22-32.
204 Maiti, P. S., Sah, K. D., Gupta, S. K. and Banerjee, S. K. (2001) Evaluation of sewage sludge as a source of irrigation and manure. J. Indian Soc. Soil Sci., v.40, p.168-172.
205 Maiti, S. K. and Ghosh, D. (2020) Chapter 24 - Plant-soil interactions as a restoration tool, Climate Change and Soil Interactions, p.689-730.
206 Makino, T. (2014) Heavy metal contamination in Japan. Proc. Int. Forum Soil Groundw., KME (Korea Ministry of Environment), Seoul, Korea, 45p.
207 López-Periago, E., Nunez-Delgado, A. and Diaz-Fierros, F. (2000) Groundwater contamination due to cattle slurry: modelling infiltration on the basis of soil column experiments. Water Res., vol34(3), p.1017-1029.   DOI
208 Pousada-Ferradas, Y., Seoane-Labandeira, S., Mora- Gutierrez, A. and Nunez-Delgado, A. (2012) Risk of water pollution due to ash-sludge mixtures: column trials. Int. J. Environ. Sci. Tech., v.9, p.21-29.   DOI
209 Pousada-Ferradas, Y., Seoane-Labandeira, S., Mora- Gutierrez, A. and Nunez-Delgado, A. (2012) Risk of water pollution due to ash-sludge mixtures: column trials. Int. J. Environ. Sci. Tech., v.9, p.21-29.   DOI
210 Qayyum, M. F., Rehman, M. Z. U., Ali, S., Rizwan, M., Naeem, A., Maqsood, M. A., Khalid, H., Rinklebe, J. and Ok, Y. S. (2017) Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere, v.174, p.515-523.   DOI
211 Raiesi, F. (2006) Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agric., Ecosyst. Environ., v.112(1), p.13-20.   DOI
212 Ram, L. C. and Masto, R. E. (2010) Review: an appraisal of the potential use of fly ash for reclaiming coal mine spoil. J. Environ. Manag., v.91, p.603-617.   DOI
213 Park, J. E., Lee, B., Lee, S., Kim, S. and Son, A. (2017) Application of enzymatic activity and arsenic respiratory gene quantification to evaluate the ecological functional state of stabilized soils nearby closed mines. J. Korean Soc. Environ. Eng., v.39(5), p.265-276.   DOI
214 Hahn, P.G., Bullington, L., Larkin, B., LaFlamme, K., Maron, J. L. andLekberg, Y. (2018) Effects of shortand long-term variation in resource conditions on soil fungal communities and plant responses to soil biota. Front. Plant Sci., 9, 1605p.   DOI
215 Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., Almendros, G. and Knicker, H. (2004) The effect of fire on soil organic matter e a review, Environ. Int., v.30(6), p.855-870.   DOI
216 Givaudan, N., Wiegand, C., Bot, B. L., Renault, D., Pallois, F., Llopis, S. and Binet, F. (2014) Acclimation of earthworms to chemicals in anthropogenic landscapes, physiological mechanisms and soil ecological implications. Soil Biol. Biochem., v.73, p.49-58.   DOI
217 Glass, D. W., Johnson, D. W., Blank, R. R. and Miller, W. W. (2008) Factors affecting mineral nitrogen transformations by soil heating: a laboratorysimulated fire study. Soil Sci., v.173(6), p.387-400.   DOI
218 Gond, D. P., Singh, S., Pal, A. and Tewary, B. K. (2013) Growth, yield and metal residues in Solanum melongena grown in fly ash amended soils. J. Environ. Biol., p.539-544.   DOI
219 Angin, D. and Sensoz, S. (2014) Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.), Int. J. Phytoremed., 16, 684-693.   DOI
220 Anastopoulos, I., Massas, I. and Pogka, E.E., Chatzipavlidis, I., Ehaliotis C. (2019) Organic materials may greatly enhance Ni and Pb progressive immobilization into the oxidisable soil fraction, acting as providers of sorption sites and microbial substrates. Geoderma, v.353, p.482-492.   DOI
221 Antolin, M. C., Pascual, L., Garcia, C., Polo, A. and Sanchez-Diaz M. (2005) Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crop. Res., v.94, p.224-237.   DOI
222 Badia, D. and Marti, C. (2003) Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Res. Manag., v.17(1), p.23-41.   DOI
223 Bandick, A. K. and Dick, R. P. (1999) Field management effects on soil enzyme activities. Soil Biol. Biochem., v.31, p.1471-1479.   DOI
224 Albiach, R., Canet, R. and Pomares, F., (2000) Ingelmo, F. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour. Technol., v.75, p.43-48.   DOI
225 Snyder, B. A. and Hendrix, P. F. (2008) Current and potential roles of soil macroinvertebrates (earthworms, Millipedes, and Isopods) in Ecological Restoration. Restor. Ecol., v.16(4), p.629-636.   DOI
226 Ketterings, Q. M., Bigham, J. M. and Laperche, V. (2000) Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J., v.64(3), p.1108-1117.   DOI
227 Khan, A. Z., Nigar, S., Khalil, S. K., Wahab, S., Rab, A., Khattak, M. K. and Henmi, T. (2013) Influence of synthetic zeolite application on seed development profile of soybean grown on allophanic soil. Pak. J. Bot., v.45(3), p.1063-1068.
228 Jones, C. G., Lawton, J. H. and Shachak, M. (1994) Organisms as ecosystem engineers. Oikos, v.69, p.373-386.   DOI
229 Somerville, P. D., May, P. B. and Livesley, S. J. (2018) Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils, J. Environ. Manage., v.227, p.365-374.   DOI
230 Srivastava, N. K. and Ram, L. C. (2009) Bio-restoration of coal mine spoil with fly ash and biological amendments. In: O. P. Chaubey, Bahadur, Vijay, P. K. Shukla(Eds.), Sustainable Rehabilitation of Degraded Ecosystems, Avishkar Publishers, p.77-91.
231 Srivastava, N. K., Ram, L. C. and Masto, R. E. (2014) Reclamation of overburden and lowland in coal mining area with fly ash and selective plantation: a sustainable ecological approach. Ecol. Eng., v.71, p.479-489.   DOI
232 Stoicescu, J., Haug, M. amd Fredlund, D. (1996) Soil water characteristics and pore size distribution of a sand-bentonite mixture. In: Proc. 49th Canadian Geotechnical Conference. St. John'S Newfoundland, September, p.23-25.
233 Yu, H., Xiao, H. and Wang, D. (2014) Effects of soil properties and biosurfactant on the behavior of PAHs in soil-water systems. Environ. Syst. Res., v.3(1), p.1-11.   DOI
234 Yi, Y. M., Oh, C. T., Kim, G. J., Lee, C. H. and Sung, K. J. (2012) Changes in the physicochemical properties of soil according to soil remediation methods. J. Soil Groundw. Environ., 17(4), 36-43   DOI
235 Yi, Y. M., Park, S. Y., Munster, C., Kim, G. J. and Sung K. J. (2016) Changes in ecological properties of petroleum oil-contaminated soil after lowtemperature thermal desorption treatment. Water Air Soil Pollut., v.227(4), p.1-10   DOI
236 Yoo, J. C., Beiyuan, J. Z., Wang, L., Tsang, D. C. W., Baek, K., Bolan, N.S ., Ok, Y. S. and Li, X. D. (2018) A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Sci. Total Environ., v.616-617, p.572-582.   DOI
237 Yuan, P., Shen, B., Duan, D., Adwek, G., Mei, X. and Lu, F. (2017) Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process. Energy, v.141, p.472-482..   DOI
238 Yuan, P., Wang, J., Pan, Y., Shen, B. and Wu, C. (2019) Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ., v.659, p.473-490.   DOI
239 Yun, S., Jin, H., Kang, S., Choi, S., Lim, Y. and Yu, C. (2010) A Comparison on the effect of soil improvement methods for the remediation of heavy metal contaminated farm land soil. J. Korean Geotech. Soc., v.26(7), p.59-70.
240 Yun, S. J. (2010) World Trend and Prospect of Environmental Restoration Industry. Gloval Green Growrh Policy, v.24, p.1-16.
241 Hazrati, S., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Modarres-Sanavy, S. A. M., Mohammadi, H. and Nicola, S. (2017) Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L, Agric. Water Manage., v.181, p.66-72.   DOI
242 Han, D.,, Luo, D., Chen, Y. and Wang, G. (2013) Transfer of Cd, Pb, and Zn to water spinach from a polluted soil amended with lime and organic materials. J. Soil. Sediment., v.13, p.1360-1368.   DOI
243 Hartl, W,, Putz, B. and Erhart, E. (2003) Influence of rates and timing of biowaste compost application on rye yield and soil nitrate levels. Eur. J. Soil Biol., v.39, p.129-139.   DOI
244 Haynes, R. J. (2009) Reclamation and revegetation of fly ash disposal sites challenges and research needs. J. Environ. Manag., v.90, p.43-53.   DOI
245 He, Z. L., Calvert, D. V., Alva, A. K., Li, Y. C. and Banks, D. J. (2002) Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant Soil, v.247, p.253-60.   DOI
246 Hera, C. (1996) The role of inorganic fertilizers and their management practices. Fertilizer Research, v.43, p.63-81.   DOI
247 Higa, T. (1991) Effective microorganisms: a biotechnology for mankind, Proc. First Int. Conf. Kyusei Nat. Farming, p.8-14.
248 Guo, X.F., Wei, Z.B., Wu, Q.T., Li, C.P., Qian, T.W. and Zheng, W. (2016) Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: field experiments. Chemosphere, v.147, p.412-419.   DOI
249 Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M. and Zhang, F. S. (2010) Significant acidification in major Chinese croplands, Science. v.327, p.1008-1010.   DOI
250 Guo, A., Ding, L., Tang, Z., Zhao, Z. and Duan, G. (2019) Microbial response to $CaCO_3$ application in an acid soil in southern China, J. Environ. Sci., 79, 321- 329(2019).   DOI
251 Guo, X. F., Zhao, G. H., Zhang, G. X., He, Q. S., Wei, Z. B., Zheng, W., Qian, T. W. and Wu, Q. T. (2018) Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere, v.209, p.776-782.   DOI
252 Giovannini, G., Lucchesi, S. and Giachetti, M. (1990) Effect of heating on some chemical parameters related to soil fertility and plant growth. Soil Sci., v.149(6), p.344-350.   DOI
253 Eriksen, J. (2005)Gross sulphur mineralisation-immobilisation turnover in soil amended with plant residues. Soil Biol. Biochem., v.37, p.2216-2224.   DOI
254 Beesley, L., Moreno-Jimenez, E. and Gomez-Eyles, J. L. (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multielement polluted soil. Environ. Pollut., v.158(6), p.2282-2287.   DOI
255 Beiyuan, J. Z., Lau, A. Y. T., Tsang, D. C. W., Zhang, W. H., Kao, C. M., Baek, K., Ok, Y. S. and Li, X. D. (2018) Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution of soil stabilization. Sci. Total Environ., v.612, p.1463-1472.   DOI
256 Sun, Y., He, Z., Wu, Q., Zheng, J., Li, Y., Wang, Y,. Chen, T. and Chi, D. (2020) Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field. Agricultural Water Management, v.235(31) 106126p.   DOI
257 Suzuki, S., Noble, A. D., Ruaysoongnern, S. and Chinabut, N. (2007) Improvement in waterholding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Res. Manag., v.21(1), p.37-49.   DOI
258 Sneath, H. E., Hutchings, T. R. and de Leij, F. A. (2013) Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene cocontaminated spoil. Environ. Pollut., v.178, p.361-366.   DOI
259 Yi, Y. M. and Sung, K. J. (2015) Influence of washing treatment on the qualities of heavy metalcontaminated soil. Ecol. Eng., v.81, p.89-92.   DOI
260 El-Mageed, T. A. A., Rady, M. M., Taha, R. S., El Azeam, S. A., Simpson, C. R. and Semida, W. M. (2020) Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Scientia Horticulturae, v.261(5), 108930p.   DOI
261 Evanko, C. R. and Dzombak, D. A. (1997) Remediation of metals-contaminated soils and groundwater. GWRTAC technol. eval. report, 28.
262 Fanning, D. S., Keramidas, V. Z. and El-Desoky, M. A. (1989) Micas. In: Dixon, J.B., Weed, S. B.(Eds.), Minerals in soil environments, SSSA Book Ser., 1, SSSA. Madison, WI, p.551-634.
263 Bertrand, M., Barot, S., Blouin, M., Whalen, J., de Oliveira, T. and Roger-Estrade, J. (2015) Earthworm services for cropping systems. A review. Agron. Sustain. Dev., v.35, p.553-567.   DOI
264 Beiyuan, J. Z., Tsang, D. C. W., Valix, M., Zhang, W. H., Yang, X., Ok, Y. S. and Li, X. D. (2017) Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. Chemosphere, v.166, p.489-496.   DOI
265 Benitez, E., Romero, E., Gómez, M., Gallardo-Lara, F. and Nogales, R. (2001) Biosolids and biosolids-ash as sources of heavy metals in a plant-soil system. Water Air Soil Poll., v.132, p.75-87.   DOI
266 Benkhelifa, M., Belkhodja, M., Daoud, Y., and Tessier, D. (2008) Effects of Maghnian bentonite on physical properties of sandy soils under semi-arid Mediterranean climate, PK. J. biol. sci. v.11(1), p.17-25.
267 Besalatpour, A., Hajabbasi, M. A., Khoshgoftarmanesh, A. H. and Dorostkar, V. (2011) Landfarming process effects on biochemical properties of petroleum contaminated soils. Soil. Sediment. Contam., v.20(2), p234-248.   DOI
268 Beesley, L. and Marmiroli, M. (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut., v.159, p.474-480.   DOI
269 Kiersch, K., Kruse, J., Regier, T. Z. and Leinweber, P. (2012) Temperature resolved alter-ation of soil organic matter composition during laboratory heating as revealed by C and N XANES spectroscopy and Py-FIMS. Thermochim. Acta, v.537, p.36-43.   DOI
270 Khorram, M. S., Zhang, W., Lin, D., Zheng, Y., Fang, H. and Yu, Y. (2016) Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. J. Environ. Sci. (China), v.44, p.269-279.   DOI
271 Kim, D., Ahn, B. and Lee, J. (2013) Impact of Environmentally-friendly Organic Agro-Materials on Chemical Properties of Remediated Soils. Korean J. Organic Aari., v.21(4), p.753-767.   DOI
272 Kim, I. S. and Lee, M. H. (2012) Pilot scale feasibility study for in-situ chemical oxidation using $H_2O_2$ solution conjugated with biodegradation to remediate a diesel contaminated site. J. Hazard. Mater., v.241-242, p.173-181.
273 Manya, J. J., (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol., v.46, 7939p.   DOI
274 Makino, T., Takano, Y., Kamiya, T., Itou, T., Sekiya, N., Inahara, M. and Sakurai, Y. (2008) Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and benchscale verification. Chemosphere, v.70, p.1035-1043.   DOI
275 Makoi, J. H. J. R. and Ndakidemi, P. A. (2008) Selected soil enzymes : Examples of their potential roles in the ecosystem. Afr. J. Biotechnol., v.7(3), p.181-191.
276 Malekian, R., Abedi-Koupai, J. and Eslamian, S. S. (2011) Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater., v.185, p.970-976.   DOI
277 Marashi, A. R. A. and Scullion, J. (2003) Earthworm casts form stable aggregates in physically degraded soils. Biol. Fertil. Soils, v.37, p.375-380.   DOI
278 Marin, J. A. Hernandez, T. and Garcia, C. (2005) Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environ. Res., v.98(2), p.185-195.   DOI
279 Mattana, S., Petrovicova, B., Landi, L., Gelsomino, A., Cortes, P., Ortiz, O. and Renella, G. (2014) Sewage sludge processing determines its impact on soil microbial community structure and function. Appl. Soil Ecol., v.75, p.150-161.   DOI
280 Faucette, L. B., Jordan, C. F., Risse, L. M., Cabrera, M., Coleman, D. C. and West, L. T. (2005) Evaluation of stormwater from compost and conventional erosion control practices in construction activities. J. Soil Water Conserv., v.60, p.288-298.
281 Filho, A. C. A. C. Penn C., Crusciol, C. A. C. and Calonego, J. C. (2017) Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions. Agric. Ecosyst. Environ., v.241, p.11-23.   DOI
282 Forey, E., Chauvat, M., Coulibaly, S. F. M., Langlois, E., Barot, S. and Clause, J. (2018) Inoculation of an ecosystem engineer (Earthworm: Lumbricus terrestris) during experimental grassland restoration: Consequences for above and belowground soil compartments. Appl. Soil Ecol., v.125, p.148-155.   DOI
283 Elbl, J., Makova, J., Javorekova, S., Medo, J., Kintl, A., Losak, T. and Lukas, V. (2019) Response of microbial activities in soil to various organic and mineral amendments as an indicator of soil quality. Agron, v.9, p.485.   DOI
284 Khan, M. R. and Singh, W. N. (2001) Effects of soil application of fly ash on the fusarial wilt on tomato cultivars. Int. J. Pest Manag., v.47, p.293-297.   DOI
285 Hong, S. H., Lee, S. M. and Lee, E. Y. (2011) Bioremediation efficiency in oil contaminated soil using microbial agents. J. Microbiol. Biotechn., v.30(3), p.301-307.
286 Kim, K. H., Kim, K. Y., Kim, J. G., Sa, T. M., Suh, J. S., Shon, B. G., Yang, J. E., Eom, K. C., Lee, S. E., Jung, K. Y., Chung, D. Y., Jung, Y. T., Jung, J. D. and Hyun, H. N. (2008) Soil science. Hyangmunsa, 193p.
287 Kim, M., Kim, Y., Kang, S., Yun, H. and Hyun, B. (2012) Long-term Application Effects of Fertilizers and Amendments on Changes of Soil Organic Carbon in Paddy Soil. Korean J. Soil Sci. Fert., v.45(6), p.1108-1113.   DOI
288 Kim, Y. K., Jin, S. H., Choi, S. D., Lee, G. D. and Ra, D. G. (2011b) EM effectiveness on remediation of oil contaminated soil. J. Korean Soc. Environ. Technol., v.12(3), p.176-181.
289 Kim, Y., Lee, S., Ham, S., Kim. H, and Choi, Y. (2011a) Soil Physicochemical Properties by applied with Mixed Ratio Soldier Fly (Hermetia illucens) Casts. Asian J. Turfgrass Sci.,v. 25(1), p.106-111.
290 Talaat, N. B. and Shawky, B. T. (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ. Exp. Bot., v.98, p.20-31.   DOI
291 Tejada, M., Garcia, C., Gonzalez, J. L. and Hernandez, M. T. (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem., v.38, p.1413-1421.   DOI
292 Tejada, M., Moreno, J. L., Hernandez, M. T. and Garcia, C. (2007) Application of two beet vinasse forms on soil restoration: effects on soil properties in an arid environment in southern Spain. Agric. Ecosyst. Environ., v.119, p.289-298.   DOI
293 Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q. and Zeng, G. (2018) Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ., 635, 92-99.   DOI
294 Makino, T., Kamiya, T., Takano, H., Itou, T., Sekiya, N., Sasaki, K., Maejima, Y. and Sugahara, K. (2007) Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: verification of on-site washing. Environ. Pollut., v.147, p.112-119.   DOI
295 Zdruli, P., Jones, R. J. A. and Montanarella, L. (2004) Organic Matter in the Soils of Southern Europe. In: European Soil Bureau Technical Report. EUR 21083 EN, Office for Official Publications of the European Communities. Luxembourg, 16p.
296 Zeb, A., Li, S., Wu, J., Lian, J., Liu, W. and Sun, Y. (2020) Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. Sci. Total Environ., v.740(20), 140145p.   DOI
297 Zhang, H. M., Xu, M. G. and Zhang, F. (2009) Long-term effects of manure application on grain yield under different cropping systems and ecological conditions in China. J. Agricult. Sci., v.147, p.31-42.   DOI
298 Zhang, K., Chen, L., Li, Y., Brookes, P. C., Xu, J. and Luo, Y. (2017) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fertil. Soils, v.53(1), p.77-87.   DOI
299 Zhang, Q., Zhou, W., Liang, G., Wang, X. Sun, J. and He, P. (2015) Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS One, v.10(4), e0124096p.   DOI