• Title/Summary/Keyword: Recycled fibers

Search Result 168, Processing Time 0.025 seconds

Study on Drainage and Physical Properties of KOCC Handsheet Containing Pretreated Wooden Fillers (전처리 목질계 충전제를 이용한 KOCC 수초지의 탈수속도와 물성 변화)

  • Chae, Hee-Jae;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.21-29
    • /
    • 2011
  • Recently, the use of recycled fibers was increased in order to replace the virgin pulp for low production cost and forest conservation. However, the recycled fibers decreases drainage rate, papermaking efficiency and product quality by short fibers and low wettability because of hornification. To overcome the limitation of low drainage rate, the technology of organic fillers were applied. Wooden fillers gave high bulk and stiffness of paper, but they reduced the strength of paper. In order to improve strength properties 4 types of strength additives were added and analyzed. Cationic starch, branched strength additive, linear wet strength additive, and linear dry strength additive were used. The drainage rate and paper properties such as bulk, air permeability and tensile strength were measured. As results of analysis, addition of branch type of strength agent such as C-starch was effective than linear type of strength agent in the drainage rate. Nevertheless there was no effect on the drainage rate by adding the pretreated wooden fillers. By adding the pretreated wooden fillers, bulk, air permeability and tensile strength of handsheets were improved with low dosage than non-pretreated fillers.

A Study on Chemical Modification of Papermaking Fibers (I) - Improved Physical Characteristics from Partial Carboxymethylated Pulps - (제지용(製紙用) 섬유(纖維)의 화학적(化學的) 개질(改質)에 관한 연구(硏究) (I) - Partial Carboxymethylation 처리에 의한 물성(物性) 향상(向上) -)

  • Choi, Jeong-Heon;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.37-46
    • /
    • 1995
  • The substitution of carboxymethylated hydroxyl group in pulp revealed more hydrophilic than hydroxyl group. And then fibers were more flexible, swell more which leads to better conformation between fibers in turn this raise paper strength. In this paper, we tried to chemical modifyings of recycled fiber, OCCs(old corrugated containers). Many researchers have examined chemical modification of papermaking fiber by partial carboxymethylation(PCM) using a organic solvent processes. We made modified PCM processes adapted waters m replace of the organic solvent. Our testings for the optimum conditions on the new method, conditions as reaction time, temperature, liquor ratios were designed likely plant system. Freenesses(SR$^{\circ}$) were increased following on carboxyl content of the samples. Handsheets of untreated samples and partial carboxymethylated OCCs were made by optimum conditions on different concentrations of the reagent. As results, maximum 25% strength increasing effects were obtained by the new method.

  • PDF

Optimum Mix Proportion and Mechanical Properties of Rain Garden Structure Concrete using Recycled Coarse Aggregate, Hwang-Toh, Blast Furnace Slag and Jute Fiber (순환굵은골재, 황토, 고로슬래그 미분말 및 마섬유를 사용한 레인가든 구조물 콘크리트의 최적배합설계 및 역학적 특성)

  • Kim, Dong-Hyun;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.25-33
    • /
    • 2013
  • In this study, the optimum mix proportions of rain garden structure concrete were decided and the mechanical properties were evaluated. Experimental parameters were blast furnace slag, hwang-toh, recycled aggregates and natural jute fibers. The target compressive strength and chloride ion penetration were more than 24 MPa and less than 1000 coulombs, respectively. The response surface method was used for statistical optimization of experimental results. The optimal mixing ratios of the blast furnace slag, hwang-toh, recycled coarse aggregate and jute fiber volume fraction were determined 59.98 %, 8.74 %, 12.12 % and 0.2 %, respectively. The compressive strength, flexural strength and chloride ion penetration test results of optimum mix ratio showed that the 24.56 MPa, 3.88 MPa and 999.08 columbs, respectively.

Properties of Concrete using Surface Treatment Recycled Aggregates and Steel Fibers (강섬유보강(鋼纖維補强) 표면처리(表面處理) 순환골재(循環骨材)콘크리트의 특성(特性))

  • Bae, Ju-Seong;Kim, Nam-Wook
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.46-53
    • /
    • 2011
  • The recycled aggregate produced from the waste concrete have the disadvantages in the quality for the natural aggregate. Therefore, in order to reuse the recycled aggregate widely it is a previous subject to improve the quality of recycled aggregate. We deduced the more effective surface treatment method using the colloidal silica solution for quality improvement of recycled aggregate. This study aimed to verify the influences of the deduced surface treatment method and the reinforcement of steel fiber to the properties of concrete. For this object, we inquired into the results of the strengths and the flexural failure tests for the five kinds of concrete specimens.

University Students' Awareness of Eco-friendly Textile Fiber (친환경 섬유소재에 대한 대학생들의 인식도 연구)

  • Lee, Sun Young;Lee, Seung Goo;Kim, Jung Hwa;Lee, Jung Soon
    • Korean Journal of Human Ecology
    • /
    • v.21 no.4
    • /
    • pp.781-790
    • /
    • 2012
  • In midst of growing interest and awareness towards sustainability and being "green", there has been increased demand for sustainable clothing. In the purpose of boosting eco-friendly textiles industry, this research was conducted by investigating environmentally-conscious clothing behavior of university students and assessing their views on eco-friendliness of fibers. Thus, their awareness on recycled polyester fiber was evaluated. The research was conducted by surveying 257 university students residing in Daejeon. The data were analyzed with descriptive statistics, factor analysis, and reliability analysis, using SPSS 19.0. The results were as follows. 1) The majority of the subjects answered "Disposing clothing in the clothing recycling container" to reduce environmental impact. 2) Six factors of eco-friendliness of fiber were extracted as reutilization, unfinishedness, economics, environment preservation, natural materials, and slow fashion by using factor analysis. 3) Subjects scored organic cotton as most eco-friendly among various fibers. Recycled polyester fiber was graded less sustainable than natural fiber, but more eco-friendly than artificial one. 4) In assessment of subject's awareness of recycled polyester fiber, they highly valued on resource-reutilization and economics, but less valued on its hygiene, thermal insulation and health-functionality.

Impact Resistance Properties of High Strength Fiber-Reinforced Composites According to Types and Amounts of Fibers (섬유 종류 및 혼입량에 따른 고강도 섬유보강 복합재료의 충돌 저항 성능)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Gyu-Yong;Lee, Sang-Kyu;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.349-355
    • /
    • 2020
  • The purpose of this study is to investigate the effects of types and amounts of fibers on the compressive strength and tensile behavior high strength fiber-reinforced composites under a static load and impact resistance properties of composites under a high-velocity projectile impact load. Three kinds of mixtures were designed and specimens were manufactured. compressive strength, uniaxial tension, and high velocity projectile impact load tests were performed. Test results showed that the amount of fiber has a greater effect on the tensile strength an d tensile strain capacity than the compressive strength, an d the tensile strain capacity was improved by using hybrid fibers. It was also found that the amount of steel fiber had a great influence on the impact resistance capacity of panels. Although the impact resistance capacity of panels could be improved by using hybrid fibers, the difference of impact resistance capacity between specimens was found to be larger than the case of use of single fiber.

Mechanical Properties and Frost Resistance of Concrete with Steel and Nylon Fibers (강섬유 및 나일론섬유를 적용한 콘크리트의 역학적 성능 및 내동해성 평가)

  • Dong-Gyou, Kim;Seung-Tae, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.386-394
    • /
    • 2022
  • In this study, the mechanical properties and frost resistance of concrete with steel and nylon fibers were experimentally investigated. Both of OPC concrete with 100 % ordinary portland cement and SGC concrete replaced with 50 % GGBFS were manufactured to evaluate effects of fibers to the performance of concrete. Compressive and split tensile strength, ultrasonic pulse velocity and surface electric resistivity measurements of concrete were carried out at a predetermined interval. In addition, the freezing & thawing resistance of concrete in accordance with ASTM C666 standard was also examined. As a result, it is seemed that the effect of fibers was remarkable to improve the mechanical properties and frost resistance of concrete, especially for the concrete incorporating steel fiber.

Manufacture of Recycled PET E-Textile by Plasma Surface Modification and CNT Dip-Coating (플라즈마 표면 개질과 CNT 함침공정을 통한 고전도성의 재생PET사 전자섬유)

  • Jun-hyeok Jang;Sang-un Kim;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • This study aims to create a highly conductive E-textile made by recycling PET with a Dip-coating process. PET fiber with hydrophobic properties is characterized by the difficulty in imparting great conductivity when both Virgin and Recycled are made of electronic fibers through a Dip-coating process. To advance the effectiveness of the Dip-coating process, a sample made of recycled PET was surface modified for 50 w 5 minutes and 10 minutes employing a Covance-2mprfq model from FEMTO SCIENCE. After that, the sample was immersed in an SWCNT dispersion (.1 wt%, Carbon Co., Ltd.) for 5 minutes, and then dip coating was conducted to allow the solution to permeate well into the sample through a padder (DAELIM lab). After the procedure was completed, the resistance measurement was measured with a multimeter at both ends and then accurately remeasured with a wider electrode. As a result of this contemplation, it was affirmed that great conductivity might be given through an impregnation process through the plasma surface modification. When the surface modification was performed for 10 minutes, the resistance was reduced by up to 2.880 times. Dependent on the results of this research, E-fibers employed in the smart wearable sector can also be made of recycled materials, improving smart wearable products that can save oil resources and reduce carbon emissions.

A Study on the Non-combustible Properties of High-density Fiber Cement Composites Mixed with Hemp Fibers (마 섬유 혼입에 따른 고밀도 섬유 시멘트 복합체의 불연 특성 연구)

  • Jang, Kyong-Pil;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.314-320
    • /
    • 2022
  • The function of reinforcing fibers used in building materials is to maintain resistance to bending loads and to function for cracking caused by drying shrinkage. High-density fiber-cement composites are mainly used for linear plates and are used to increase bending resistance. Therefore, tensile properties, bonding strength with cement hydrate, alkali resistance, and the like are required. Recently, as the non-combustible performance has been strengthened, a function to minimize the occurrence of sparks during high-temperature heating has been added. Therefore, the use of organic fibers is limited. In this study, a study was conducted to replace polypropylene used as reinforcing fiber with hemp fiber with excellent heat resistance. Hemp fibers have excellent heat resistance, good affinity with cement, and excellent alkali resistance. Based on the total volume of polypropylene fibers used in the existing formulation, the non-combustible performance was compared and evaluated by using hemp fibers instead of the polypropylene fibers, and basic physical properties such as flexural strength were tested. As a result of conducting a non-combustibility and physical property test using hemp fibers with a fiber length of 7 mm using 2 % and 3 % by weight, it was found that there is no remaining time of the flame, and the flexural strength can be secured at 95 % level of the existing polypropylene fiber.