• Title/Summary/Keyword: Recursive least-square algorithm

Search Result 170, Processing Time 0.029 seconds

Design of Incremental FCM-based Recursive RBF Neural Networks Pattern Classifier for Big Data Processing (빅 데이터 처리를 위한 증분형 FCM 기반 순환 RBF Neural Networks 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1070-1079
    • /
    • 2016
  • In this paper, the design of recursive radial basis function neural networks based on incremental fuzzy c-means is introduced for processing the big data. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered for the activation function of radial basis function neural networks, which could effectively do big data processing. In the conclusion phase, the connection weights of networks are given as the linear function. And then the connection weights are calculated by recursive least square estimation. In the inference phase, a final output is obtained by fuzzy inference method. Machine Learning datasets are employed to demonstrate the superiority of the proposed classifier, and their results are described from the viewpoint of the algorithm complexity and performance index.

An Innovative Application Method of Monthly Load Forecasting for Smart IEDs

  • Choi, Myeon-Song;Xiang, Ling;Lee, Seung-Jae;Kim, Tae-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.984-990
    • /
    • 2013
  • This paper develops a new Intelligent Electronic Device (IED), and then presents an application method of a monthly load forecasting algorithm on the smart IEDs. A Multiple Linear Regression (MLR) model implemented with Recursive Least Square (RLS) estimation is established in the algorithm. Case Study proves the accuracy and reliability of this algorithm and demonstrates the practical meanings through designed screens. The application method shows the general way to make use of IED's smart characteristics and thereby reveals a broad prospect of smart function realization in application.

Vehicle Mass and Road Grade Estimation for Longitudinal Acceleration Controller of an Automated Bus (자율주행 버스의 종방향 제어를 위한 질량 및 종 경사 추정기 개발)

  • Jo, Ara;Jeong, Yonghwan;Lim, Hyungho;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.14-20
    • /
    • 2020
  • This paper presents a vehicle mass and road grade estimator for developing an automated bus. To consider the dynamic characteristics of a bus varying with the number of passengers, the longitudinal controller needs the estimation of the vehicle's mass and road grade in real-time and utilizes the information to adjust the control gains. Discrete Kalman filter is applied to estimate the time-varying road grade, and the recursive least squares algorithm is adopted to account for the constant mass estimation. After being implemented in MATLAB/Simulink, the estimators are evaluated with the dynamic model and experimental data of the target bus. The proposed estimators will be applied to complement the algorithm of the longitudinal controller and proceed with algorithm verification.

Design of a Linear PA for the Frequency Hopping Transmitter using the Adaptive Predistortion Linearizer (적응 전치왜곡 선형화기를 사용한 주파수 도약 송신기용 선형 전력증폭기의 설계)

  • 강경원;이상설
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.802-809
    • /
    • 2001
  • A linear power amplifier for the VHF frequency-hopping(FH) transmitter using an adaptive predistortion linearizer is designed. An analog polynomial linearizer as predistorter is employed. The recursive least square(RLS) algorithm is employed in the optimization process to minimize the errors between the predistorter and postdistorter output signals. Experimental results show that the adjacent channel power of the designed power amplifier is reduced by of 10 dB.

  • PDF

Parameter Estimation of Two-mass System using Adpative System and Acceleration Information (적응시스템과 가속도정보를 이용한 이관성 시스템의 기계계 파라미터 추정)

  • 박태식;이준호;신은철;유지윤;이정욱;김성환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.575-583
    • /
    • 2000
  • In this paper, a novel estimation alogrithm of mechanical parameters in two-mass system proposed. The inertia of a load and a motor and the stiffness are estimated by using RLS(Recursive Least Square) algorithm and acceleration information of motor. The effectiveness of the proposed scheme is verified with simulation and experiments results.

  • PDF

Nonlinear Neural Networks for Vehicle Modeling Control Algorithm based on 7-Depth Sensor Measurements (7자유도 센서차량모델 제어를 위한 비선형신경망)

  • Kim, Jong-Man;Kim, Won-Sop;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.525-526
    • /
    • 2008
  • For measuring nonlinear Vehicle Modeling based on 7-Depth Sensor, the neural networks are proposed m adaptive and in realtime. The structure of it is similar to recurrent neural networks; a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. This new neural networks is Error Estimated Neural Networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models.

  • PDF

Design of Speed Controller for Induction Motor With Inertia Variation (관성 변동을 갖는 유도전동기 속도 제어기 설계)

  • 신은철;김종선;공병구;유지윤;박내식;이준호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.446-452
    • /
    • 2001
  • In this paper, a novel design method of variable motor inertia in Induction motor drive system is proposed. The inertia of a load and a motor are estimated by using RLS (Recursive Least Square) algorithm. The speed controller is designed by Kharitonov theory of motor. The effectiveness of the proposed scheme is verified with simulation and experiment results.

  • PDF

Mode analysis of end-milling process by RLSM (RLSM 모델링에 의한 엔드밀링 시스템의 모드 분석)

  • Kim, J.D.;Yoon, M.C.;Kim, K.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.54-60
    • /
    • 2011
  • In this study, an analytical realization of end-milling system was introduced using recursive parametric modeling analysis. Also, the numerical mode analysis of end-milling system with different conditions was performed systematically. In this regard, a recursive least square(RLS) modeling algorithm and the natural mode for real part and imaginary one was discussed. This recursive approach (RLSM) can be adopted for the on-line system identification and monitoring of an end-milling for this purpose. After experimental practice of the end-milling, the end-milling force was obtained and it was used for the calculation of FRF(Frequency response function) and mode analysis. Also the FRF was analysed for the prediction of a end-milling system using recursive algorithm.

Performance Comparison of Acoustic Equalizers using Adaptive Algorithms in Shallow Water Condition (천해환경에서 적응 알고리즘을 이용한 음향 등화기의 성능 비교)

  • Chuai, Ming;Park, Kyu-Chil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.253-260
    • /
    • 2018
  • The acoustic communication channel in shallow underwater is typically shown as time-varying multipath fading channel characteristics. The received signal through channel transmission cause inter-symbol interference (ISI) owing to multiple components of different time delay and amplitude. To compensate for this, several techniques have been used, and one of them is acoustic equalizer. In this study, we used four equalizers - feed forward equalizer (FFE), decision directed equalizer (DDE), decision feedback equalizer (DFE) and combination DDE with DFE to compensate ISI. And we applied two adaptive algorithms to adjust coefficient of equalizers - normalized least mean square algorithm and recursive least square algorithm. As result, we found that it has a significant performance improvement over 6 dB on SNR in nonlinear equalizer. By combination of DFE and DDE has almost best performance in any case.

A UDU decomposition based recursive total least square method (UDU 행렬분해법을 이용한 재귀적 TLS 알고리즘)

  • Lim Jun-seok;Choi Nakjin;Sung KoengMo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.547-550
    • /
    • 2004
  • 본 논문은 시스템 인식에서 RLS의 성능을 높이기 위한 한 방법으로 UDU 행렬 분해법을 바탕으로 한 recursive total least squares (RTLS) algorithm을 제안한다. 기존의 RTLS는 Power Method에 의거해서 recursive하게 만든 형태이어서 RLS와 거의 같은 구조이다. 그러나 본 논문에서는 일반적인 Power Method가 rank-1 update를 이용하기 때문에 ill-condition에 빠질 가능성이 높은 점을 감안하여, UDU 행렬 분해법을 사용한 RTLS방법을 제안하고, 그를 시스템 인식에 적용한다.

  • PDF