RLSM 모델링에 의한 엔드밀링 시스템의 모드 분석 Mode analysis of end-milling process by RLSM

김종도・윤문철・김광희

J. D. Kim, M. C. Yoon, K. H. Kim

(접수일 : 2011년 01월 27일, 수정일 : 2011년 06월 23일, 채택확정 : 2011년 07월 04일)

Key Words : ARMA(자동회귀이동평균), End-milling system(엔드밀링 시스템), FRF(주파수응답함수), Mode(모드), RLSM(순환최소자승법)

Abstract : In this study, an analytical realization of end-milling system was introduced using recursive parametric modeling analysis. Also, the numerical mode analysis of end-milling system with different conditions was performed systematically. In this regard, a recursive least square(RLS) modeling algorithm and the natural mode for real part and imaginary one was discussed. This recursive approach (RLSM) can be adopted for the on-line system identification and monitoring of an end-milling for this purpose. After experimental practice of the end-milling, the end-milling force was obtained and it was used for the calculation of FRF(Frequency response function) and mode analysis. Also the FRF was analysed for the prediction of a end-milling system using recursive algorithm.

1. 서 론

일반적으로 시계열 진동모델링은 적용하는 시스템 을 수학적으로 정의해 놓고 수학적 방법에 의하여 그 시스템을 분석하는 것이 기본적으로 필요하다. 최 근 가공에 적용할 수 있는 연구 중 의미 있는 연구로 J. D. Kim¹⁾의 연구가 있고 이 연구는 2자유도의 커 플 시스템과 언커플 시스템에서 ARMA 시계열 모델 을 이용하여 고유모드를 구하는 방법을 제시하였고 또한 auto 및 크로스(cross) 스펙트럼(spectrum) 에 너지를 이용하여 시스템의 고유모드를 분석 하였다. 시스템 분석은 파라메트릭 모델링 식의 전달함수에 서 스펙트럼을 얻을 수가 있고 이 스펙트럼에 대한 연구에는 S. M. Kav²⁾가 많은 연구를 하였다. 본 연 구에서는 엔드밀링 시스템에서의 모드 분석을 순환 자동회귀 이동평균(Recursive Auto Regressive Moving Average) 알고리즘을 이용하였고 사용되는 시계열 신호로는 엔드밀링 절삭력을 이용하여 회전 수가 다른 여러 조건에서 스펙트럼의 분석으로 그

윤문철(교신저자): 부경대학교 기계자동차공학과 E-mail: mcyoon@pknu.ac.kr, Tel: 051-629-6160 김광희: 부경대학교 기계자동차공학과 김종도: 부경대학교 대학원 엔드밀 가공시스템의 공구날 패싱 주파수와 회전수 와의 관계를 분석할 수 있었다. 이 순환 시계열 모델 로는 각 단계별로 스펙트럼 분석과 그 모델링에서의 고유모드를 바로 온라인으로 구할 수 있다는 장점이 있다.

본 논문에서 사용한 모델링 기법으로는 순환자동 회귀이동평균 모델링법 중 *RLSM*(Recursive least square method)알고리즘을 이용하여 실시간으로 *ARMA* 스펙트럼 분석과 고유모드 분석으로 엔드밀 링 시스템의 공구날 패싱 주파수 특성을 분석할 수 있었다. 우선 각각의 회전수에서의 엔드밀 가공 절삭 력을 이용하여 그때의 툴패싱 주파수의 1차 및 2차 조화모드 계산을 할 수 있었고 회전수에 따라 수행 한 여러 절삭조건에서 각 날의 패싱 주파수의 모드 와 계산된 모드를 시간이 진행함에 따라 온라인으로 비교할 수 있었고 매 순환 시간 경과에 따라 주어진 알고리즘에 따라 각 고유모드 변수들이 적응해 가는 과정을 보이고자 하였다.

2. 관련이론

2.1 ARMA 모델 엔드밀 가공을 여러 회전 조건에서 수행하여 얻은 절삭력 데이타를 실시간으로 수집하여 수학적 순환 알고리즘을 이용하여 엔드밀 가공을 모델링하였고 이 ARMA 모델링 변수의 거동으로 엔드밀 가공시스 템의 모드 특성을 판단하고 진단하였다. 엔드밀 가공 시스템은 다음과 같은 이산형태의 ARMA 시계열로 나타낼 수 있고 이때 자동회귀, 이동평균 차수를 각 각 n, m이라고 하여 ARMA(n,m)모델을 나타내면 다음과 같다.

$$\begin{aligned} (1+a_1z^{-1}+a_2z^{-2}+...+a_nz^{-n})x(t) \\ &=(1+b_1z^{-1}+b_2z^{-2}+...+b_mz^{-m})a(t) \end{aligned} \tag{1} \\ \texttt{(1)} \\ \texttt{(1)} \\ \texttt{(2)} \\ \texttt{(1)} \\ \texttt{(1)} \\ \texttt{(2)} \\ \texttt{(2)} \\ \texttt{(1)} \\ \texttt{(2)} \\ \texttt{(2)}$$

위에서 정의된 시계열 모델의 경우 각 전달함수의 자동회귀 부분인 분모 항에서 고유모드인 고유 진동 수와 감쇠계수를 계산할 수 있다. 분모 항에서 인수 분해 된 짝 (1 - $\lambda_i \cdot z^{-1}$)(1 - $\lambda_i^* \cdot z^{-1}$) 로부터 각각 의 한 개의 고유진동수와 감쇠계수를 구하게 된다. 시스템에서 측정된 실험데이터의 샘플링 주기를 T_s 라 하면 이 시스템의 고유 진동수와 감쇠계수는 각 각 다음과 같이 표현된다.⁽³⁾

$$\varpi_{i} = \frac{1}{T_{s}} \sqrt{\frac{\left[\ln(\lambda_{i} \cdot \lambda_{i}^{*})^{2}\right]}{4}} + \left[\cos^{-1}\left(\frac{\lambda_{i} + \lambda_{i}^{*}}{2 \cdot \sqrt{\lambda_{i} \cdot \lambda_{i}^{*}}}\right)\right]^{2}$$
(2)

$$\xi_{i} = \sqrt{\frac{\left[\ln(\lambda_{i} \cdot \lambda_{i}^{*})\right]^{2}}{\left[\ln(\lambda_{i} \cdot \lambda_{i}^{*})\right]^{2} + 4\left[\cos^{-1}\left(\frac{\lambda_{i} + \lambda_{i}^{*}}{2 \cdot \sqrt{\lambda_{i} \cdot \lambda_{i}^{*}}}\right)\right]^{2}}}$$
(3)

2.2 RLSM 알고리즘

시계열 절삭력 신호 x(t)는 ARMA(n,m)의 모델 로 표현할 수 있고 일반적인 순환최소자승법의 형태 인 RLSM 알고리즘은 다음과 같이 나타낼 수 있다. 초기항 e(t)가 측정가능하다면 순환 알고리즘은

$$\theta = \begin{bmatrix} a_1 & a_2 & \dots & a_n & b_0 & b_1 & \dots & b_m \end{bmatrix}$$
(4)

$$\varphi(t) = [-x(t-1), \dots, -x(t-n), \hat{e}(t-1), \dots, \hat{e}(t-m)]^t \quad (5)$$

$$e(t) = x(t) - \varphi^t(t)\theta(t-1) \tag{6}$$

$$R(t) = \left(I - \frac{R(t-1)\varphi(t)\varphi^t(t)}{\lambda(t) + \varphi^t(t)R(t-1)\varphi(t-1)}\right) \frac{R(t-1)}{\lambda(t)}$$
(7)

$$K(t) = \frac{R(t-1)\varphi(t)}{\lambda(t) + \varphi^t(t)R(t-1)\varphi(t-1)}$$
(8)

$$\theta(t) = \theta(t-1) + K(t)e(t) \tag{9}$$

$$\hat{e}(t) = x(t) - \varphi^t(t)\theta(t) \tag{10}$$

여기서, 파라메타 λ(t)는 망각지수로서 일반적으로 그 크기를 1 에 가까운 수치로 하여 계산한다. 알고 리즘의 α의 초기 조건은 상수가 상당히 큰 임의의 수치로하여 다음과 같이 선택하였다.

$$R(0) = \alpha I, \quad \theta(0) = 0, \quad \varphi(0) = 0$$

위의 순환알고리즘에 의하여 *ARMA*상수를 구할 수 있고 다음의 전달함수 식에 의하여 주파수 응답 곡선(Frequency response function : *FRF*)과 파워스 펙트럼을 얻을 수 있다. 시스템의 전달함수를 표현하 면 다음과 같다.

$$H(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}$$
(11)

식에서 *z* = *e^{iwT}를* 대입하여 *FRF*와 파워스펙트럼 을 구할 수 있다.

3. 실험 및 분석

Fig. 1은 엔드밀링 절삭력을 수행하는 측정을 나타 내고 있으며 절삭력 신호를 10kHz의 샘플링주파수 로 공구동력계로 측정하였고 절삭조건은 500~1300 rpm 의 5 단계로 하여 실험하였고 그 실험조건은 Table 1 에 정리되어 있다.

Instrument	Specification		
Workpiece	SM45C		
Endmill	Diameter=15mm Helix angle=30° four fluted HSS		
Feedrate	0.02mm/rev		
Axial depth of cut	4mm		
Radial depth of cut	7.5mm		
Rotational speed	stage : ① 500rpm ② 700rpm stage : ③ 900rpm ④ 1100rpm stage : ⑤ 1300rpm		
Overhang	48.7mm		
Cutting method	Up-milling		
Tool dynamometer	piezo type (9272B:kistler Co.)		
Oscilloscope	Hung chang 5504 40Hz		
A/D converter	DT 3001,Global package		

Table 1 Cutting conditions and experimental equipments

3.2 엔드밀링 절삭력 분석

Fig. 2는 엔드밀링 절삭력을 공구동력계로 측정하 여 500~1300 rpm의 5 단계에서 측정한 절삭력을 함 께 표현하고 있는 절삭력 신호이다. Fig. 2의 (a)는 5 단계 조건으로 구성된 엔드밀링 절삭력의 형상을 보 여주고 있다. Fig. 1 및 Table 1에서 주어진 가공 상 태의 엔드밀 물림 조건에서 알 수 있듯이 1단계~5 단계의 절삭력의 회전수는 각각 500, 700, 900, 1100, 1300 rpm 의 조건으로 가공된 절삭력 신호가 모두 포함된 경우이다. Fig. 2의 (b)는 Fig. 2(a)의 측정된 엔드밀링 절삭력을 RLSM 알고리즘으로 절삭력을 추종하여 예측한 것으로 특히 5단계에서 높은 피크 의 절삭력 신호가 제거되어 약간의 필터링 효과가 부여되어 추종되는 것을 알 수 있다. Fig. 2의 (c)는 Fig. 2(a)의 엔드밀링 절삭력을 RLSM 알고리즘으로 절삭력을 예측한 Fig. 2(a) 와 Fig. 2(b)의 차이를 나 타내는 식(6)의 잔차 신호를 보여주고 있다. 잔차는 절삭력의 회전속도가 높은 영역에서 그 특성이 강하 게 나타나는 것을 알 수 있고 이는 시스템이 불안정 하게 될 가능성이 많다는 것을 알 수 있다.

따라서 이 잔차신호는 절삭력상태가 매우 불안정 하게 가공되는 조건을 나타낸다. Fig. 2의 (d)는 Fig. 2(a)의 엔드밀링 절삭력을 *RLSM* 알고리즘으로 측 정 절삭력과 예측절삭력의 다음 단계의 잔차를 나타 내는 식(10)의 예측 잔차 신호를 보여주고 있고 이는 다음단계의 변수들을 구하는데 사용된다. 이 예측치 는 식(6)에 의한 잔차와 비슷한 특성을 나타내고 엔

Fig. 2 Measured and its predicted parameters

드밀링 절삭력의 잔차 특성에는 심한 돌출부가 나타 나지 않고 단지 절삭력의 단계별 경계면에서만 약간 의 급격한 변동이 나타나고 있다.

Fig. 3(a),(b)는 Fig. 2(a)의 절삭력을 추종할 시 계 산되는 고유진동수와 감쇠계수를 나타내고 있다 각 고유진동수와 감쇠계수는 각 시계열 모델에서 식(2) 과 식(3)을 이용하여 감쇠계수, 고유모드 값을 추종 한 결과이고 각 고유모드의 상태가 달리변하는 형태

Fig. 3 Natural frequency and damping ratio of end-milling system

로 추종됨을 알 수 있다. Fig. 4(a)는 Fig. 2(a)의 1단 계만의 엔드밀링 절삭력 신호를 이용하여 *RLSM* 순 환 알고리즘으로 각각 *ARMA* 모델링 차수(6, 3)으로 모델링한 후 식(11)를 이용하여 스펙트럼을 분석을 한 결과이다. 1단계 고유모드는 식(2),(3)으로 계산할 수 있고 Table 2의 고유모드 수치를 얻게 된다. Fig. 4

Fig. 4 Power spectrum of end-milling system

의 (b)-(e)는 Fig. 2(a)의 2~5단계의 각 엔드밀링 절 삭력 신호를 *RLSM* 알고리즘을 이용하여 스펙트럼 분석을 한 결과이고 이는 마찬가지로 Table 2의 2단 계~5단계의 고유 모드와 일치하는 모드를 나타나게 되고 이 모드는 4날 엔드밀 공구패싱주파수에 해당 하게 된다. Fig. 4의 (f)는 Fig. 2(a)의 1~5단계가 모 두 포함된 엔드밀링 절삭력 신호를 RLSM 알고리즘 을 이용하여 스펙트럼 분석을 한 결과이고 이는 마 찬가지로 Table 2의 마지막 모든 단계의 고유모드와 일치한다. 또한, 1단계에서의 고유모드는 500 rpm에 서의 공구날 패싱 주파수를 의미하며 이는 500rpm*4 날/60초=33 Hz를 나타내고 있으며 Table 2의 값 32.44 Hz로 계산되어 잘 일치하고 있음을 알 수 있 다. 약간의 차이는 회전 rpm이 500보다 약간 낮게 실제로 회전하고 있는 것으로 사료된다. Table 2의 2 단계에서 5단계의 고유 모드는 700, 900, 1100, 1300 rpm에서의 공구날 패싱 주파수를 의미하며 이는 마 찬가지로 46.6, 60, 73, 86 Hz를 나타내고 있으며 수 식으로는 45.9, 60.11, 73.09, 84.82 Hz로 각각 계산되 어 각 단계에서 엔드밀의 공구날 패싱 주파수와 잘 일치하고 있음을 보여주고 있다.

(m) all stage(imaginary)

Fig. 5 Real and imaginary part of FRF in each stage for the end-milling

Fig. 5의 (a),(b)는 Fig. 2(a)의 1단계의 엔드밀링 절삭력 신호를 이용하여 RLSM 알고리즘으로 각각 ARMA(6, 3)으로 모델링한 후 식(11)를 이용하여 실 수부 및 허수부 FRF를 분석을 한 결과이다. 1단계 고유모드는 Table 2의 수치와 일치하고 실수부와 허 수부에서 고유모드 특성이 잘 나타나게 된다. Fig. 5(c)-(m)은 Fig. 2(a)의 2~5단계의 각 엔드밀링 절 삭력 신호를 RLSM 알고리즘을 이용하여 주파수 응 답곡선을 분석한 결과이고 Table 2의 2단계~5단계 의 고유모드와 잘 일치하고 있다.

Table 2 Predicted natural frequency and damping ratio

Mode	1st mode		2nd mode	
Stage	natural frequency	damping ratio	natural frequency	damping ratio
1st	32.44	0.0508	102.28	0.1820
2nd	45.97	0.0182	106.01	0.4378
3rd	60.11	0.0217	118.25	0.0316
4th	73.09	0.0179	146.57	0.0745
5th	84.82	0.0417	121.01	0.1204
all	80.57	0.0707	132.39	0.3712

1단계에서의 고유모드는 500 rpm에서의 공구날 패싱 주파수를 의미하며 이는 파워스펙트럼의 경우 와 같이 33Hz를 나타내고 있음을 알 수 있다. 2단계 에서 5단계의 고유모드는 700, 900, 1100, 1300 rpm 에서의 4날 엔드밀링 공구날 패싱 주파수를 의미하 며 이는 46.6, 60, 73, 86 Hz를 나타내고 이는 실수부 와 허수부에서도 모두 잘 나타나고 있음을 확인할 수 있다. 따라서 이 주파수 응답곡선을 이용하여도 엔드밀링 시스템의 공구날 주파수 모드를 확인할 수 있음을 알 수 있다. 공구날 주파수의 모드로는 33, 45.9, 60.11, 73.09, 84.82 Hz로 계산되었고 각 단계에 서 4날의 공구날 주파수가 잘 일치하고 있음을 보여 주고 있다.

4. 결 론

본 연구는 엔드밀링 절삭력을 이용하여 RLSM 알 고리즘으로 주파수 응답곡선 및 파워스펙트럼을 비 교 분석하였으며 다음과 같은 결론을 얻었다.

 1. 엔드밀링 절삭력 시스템을 순환최소자승법으로 모델링하여 그 절삭력 신호를 온라인으로 예측할 수 있었고 FRF 및 파워스펙트럼을 분석하여 4날 공구 날 패싱 주파수를 정확하게 계산할 수 있었다.

2. 순환 알고리즘으로 엔드밀링 절삭력 시스템의 고유진동수와 감쇠계수를 실시간으로 계산할 수 있 었고 각 단계에서는 그 고유모드의 계산치의 변동이 작았으나 모든 조건을 포함하는 신호에서는 그 고유 모드의 변동이 많게 됨을 확인 할 수 있었다.

3. 순환 알고리즘을 이용하여 실수부와 허수부의 FRF 및 파워스펙트럼의 특성 분석을 통해서도 공구 날 패싱 주파수와 그 수치를 알 수 있었고 이런 고유 모드의 심한 변동 특성은 절삭력 신호를 이용하여 상태의 변화가 심한 이상상태 진단에도 사용할 수 있음을 알 수 있었다.

후 기

본 연구는 2011년도 지식경제부와 한국산업기술재 단의 전략기술인력 양성사업으로 수행된 연구 결과 임.

참고 문헌

 J. D. Kim, and M. C. Yoon, 2006, "Parametric Modelling of Uncoupled System", KSMPE, Vol. 5, No. 3, pp. 36–42.

- 2. S. M. Kay, 1990, "Modern Spectral Estimation: theory and application", Prentice Hall.
- M. C. Yoon, H. D. Cho and S. K. Kim, 1999, "A Study on Diagnostics of Machining System with ARMA Modelling and Spectrum Analysis", KSMTE, Vol. 8, No. 3, pp. 42–51.
- M. C. Yoon, 1998, "A study on the modelling and diagnostics in drilling operation", KSPSE, Vol. 2, No. 2, pp. 73–80.
- K. Kanazawa and K. Hirata, 2005, "Parametric Estimation of the Cross-Power Spectral Density" J. of Sound and Vibration, Vol. 282, pp. 1–35.
- 6. Yusuf Altintas, 2000, "Manufacturing Automation", Cambridge Univ., pp. 33–46.
- M. C. Yoon and Y. K. Kim, 2002, "Chatter Modelling and its Diagnostics in End- milling", KSMPE, Vol. 1, No. 1, pp. 123–132.
- S. L. Oh, D. H. Chin and M. C. Yoon, 2004, "Detection and Analysis of Chatter in End-milling Operation", KSMTE, Vol. 13, No. 6, pp. 10–16.