• Title/Summary/Keyword: Recursive least squares method

Search Result 97, Processing Time 0.023 seconds

Estimation of ESR in the DC-Link Capacitors of AC Motor Drive Systems with a Front-End Diode Rectifier

  • Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.411-418
    • /
    • 2015
  • In this paper, a new method for the online estimation of equivalent series resistances (ESR) of the DC-link capacitors in induction machine (IM) drive systems with a front-end diode rectifier is proposed, where the ESR estimation is conducted during the regenerative operating mode of the induction machine. In the first place, a regulated AC current component is injected into the q-axis current component of the induction machine, which induces the current and voltage ripple components in the DC-link. By processing these AC signals through digital filters, the ESR can be estimated by a recursive least squares (RLS) algorithm. To acquire the AC voltage across the ESR, the DC-link voltage needs to be measured at a double sampling frequency. In addition, the ESR current is simply reconstructed from the stator currents and switching states of the inverter. Experimental results have shown that the estimation error of the ESR is about 1.2%, which is quite acceptable for condition monitoring of the capacitor.

Interference Cancellation for Wireless LAN Systems Using Full Duplex Communications (전이중 통신 방식을 사용하는 무선랜을 위한 간섭 제거 기법)

  • Han, Suyong;Song, Choonggeun;Choi, Jihoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2353-2362
    • /
    • 2015
  • In this paper, we employ the single channel full duplex radio for wireless local area network (WLAN) systems, and design digital interference cancellers using adaptive signal processing. When the full duplex scheme is used for WLAN systems with multiple transmit and receive antennas, some interference is caused through the feedback of transmit signals from multiple antennas. To remove the feedback interference, we derive the least mean square (LMS), normalized LMS (NLMS), and recursive least squares (RLS) algorithms based on adaptive signal processing techniques. In addition, we analyze the theoretical convergence of the proposed LMS and RLS methods. The channel capacity of full duplex radios increases by two times than that of half duplex radios, when the packet error rate (PER) performances for the two systems are identical. Through numerical simulations in WLAN systems, it is shown that the full duplex method with the proposed interference cancellers has a similar PER performance with the conventional half duplex transmission scheme.

An Efficient Adaptive Digital Filtering Algorithm for Identification of Second Order Volterra Systems (이차 볼테라 시스템 인식을 위한 효율적인 적응 디지탈 필터링 알고리즘)

  • Hwang, Y.S.;Mathews, V.J.;Cha, I.W.;Youn, D.H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.98-109
    • /
    • 1988
  • This paper introduces an adaptive nonlinear filtering algorithm that uses the sequential regression(SER) method to update the second order Volterra filter coefficients in a recursive way. Conventionally, the SER method has been used to invert large matrices which result from direct application of Wiener filter theory to the Volterra filter. However, the algorithm proposed in this paper uses the SER approach to update the least squares solution which is derived for Gaussian input signals. In such an algorithm, the size of the matrix to be inverted is smaller than that of conventional approaches, and hence the proposed method is computationally simpler than conventional nonlinear system identification techniques. Simulation results are presented to demonstrate the performance of the proposed algorithm.

  • PDF

The Improvement of Convergence Characteristic using the New RLS Algorithm in Recycling Buffer Structures

  • Kim, Gwang-Jun;Kim, Chun-Suck
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-698
    • /
    • 2003
  • We extend the sue of the method of least square to develop a recursive algorithm for the design of adaptive transversal filters such that, given the least-square estimate of this vector of the filter at iteration n-l, we may compute the updated estimate of this vector at iteration n upon the arrival of new data. We begin the development of the RLS algorithm by reviewing some basic relations that pertain to the method of least squares. Then, by exploiting a relation in matrix algebra known as the matrix inversion lemma, we develop the RLS algorithm. An important feature of the RLS algorithm is that it utilizes information contained in the input data, extending back to the instant of time when the algorithm is initiated. In this paper, we propose new tap weight updated RLS algorithm in adaptive transversal filter with data-recycling buffer structure. We prove that convergence speed of learning curve of RLS algorithm with data-recycling buffer is faster than it of exiting RLS algorithm to mean square error versus iteration number. Also the resulting rate of convergence is typically an order of magnitude faster than the simple LMS algorithm. We show that the number of desired sample is portion to increase to converge the specified value from the three dimension simulation result of mean square error according to the degree of channel amplitude distortion and data-recycle buffer number. This improvement of convergence character in performance, is achieved at the B times of convergence speed of mean square error increase in data recycle buffer number with new proposed RLS algorithm.

Mean Square Projection Error Gradient-based Variable Forgetting Factor FAPI Algorithm (평균 제곱 투영 오차의 기울기에 기반한 가변 망각 인자 FAPI 알고리즘)

  • Seo, YoungKwang;Shin, Jong-Woo;Seo, Won-Gi;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.177-187
    • /
    • 2014
  • This paper proposes a fast subspace tracking methods, which is called GVFF FAPI, based on FAPI (Fast Approximated Power Iteration) method and GVFF RLS (Gradient-based Variable Forgetting Factor Recursive Lease Squares). Since the conventional FAPI uses a constant forgetting factor for estimating covariance matrix of source signals, it has difficulty in applying to non-stationary environments such as continuously changing DOAs of source signals. To overcome the drawback of conventioanl FAPI method, the GVFF FAPI uses the gradient-based variable forgetting factor derived from an improved means square error (MSE) analysis of RLS. In order to achieve the decreased subspace error in non-stationary environments, the GVFF-FAPI algorithm used an improved forgetting factor updating equation that can produce a fast decreasing forgetting factor when the gradient is positive and a slowly increasing forgetting factor when the gradient is negative. Our numerical simulations show that GVFF-FAPI algorithm offers lower subspace error and RMSE (Root Mean Square Error) of tracked DOAs of source signals than conventional FAPI based MUSIC (MUltiple SIgnal Classification).

An Analysis for the Structural Variation in the Unemployment Rate and the Test for the Turning Point (실업률 변동구조의 분석과 전환점 진단)

  • Kim, Tae-Ho;Hwang, Sung-Hye;Lee, Young-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.253-269
    • /
    • 2005
  • One of the basic assumptions of the regression models is that the parameter vector does not vary across sample observations. If the parameter vector is not constant for all observations in the sample, the statistical model is changed and the usual least squares estimators do not yield unbiased, consistent and efficient estimates. This study investigates the regression model with some or all parameters vary across partitions of the whole sample data when the model permits different response coefficients during unusual time periods. Since the usual test for overall homogeneity of regressions across partitions of the sample data does not explicitly identify the break points between the partitions, the testing the equality between subsets of coefficients in two or more linear regressions is generalized and combined with the test procedure to search the break point. The method is applied to find the possibility and the turning point of the structural change in the long-run unemployment rate in the usual static framework by using the regression model. The relationships between the variables included in the model are reexamined in the dynamic framework by using Vector Autoregression.

A Robust Digital Pre-Distortion Technique in Saturation Region for Non-linear Power Amplifier (비선형 전력 증폭기의 포화영역에서 강인한 디지털 전치왜곡 기법)

  • Hong, Soon-Il;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.681-684
    • /
    • 2015
  • Power amplifier is an essential component for transmitting signals to a remote receiver in wireless communication systems. Power amplifier is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and decreases the transmit signal quality. To linearize power amplifiers, many techniques have been developed so far. Among the techniques, digital pre-distortion is known as the most cost and performance effective technique. However, the linearization performance falls down abruptly when the power amplifier operates in its saturation region. This is because of the severe nonlinearity. To relieve this problem, this paper proposes a new adaptive predistortion technique. The proposed technique controls the adaptive algorithm based on the power amplifier input level. Specifically, for small signals, the adaptive predistortion algorithm works normally. On the contrary, for large signals, the adaptive algorithm stops until small signals occur again. By doing this, wrong coefficient update by severe nonlinearity can be avoided. Computer simulation results show that the proposed method can improve the linearization performance compared with the conventional digital predistortion algorithms.

  • PDF