• Title/Summary/Keyword: Recursive least squares algorithm

Search Result 114, Processing Time 0.025 seconds

Adaptive System Identification Using an Efficient Recursive Total Least Squares Algorithm

  • Choi, Nakjin;Lim, Jun-Seok;Song, Joon-Il;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3E
    • /
    • pp.93-100
    • /
    • 2003
  • We present a recursive total least squares (RTLS) algorithm for adaptive system identification. So far, recursive least squares (RLS) has been successfully applied in solving adaptive system identification problem. But, when input data contain additive noise, the results from RLS could be biased. Such biased results can be avoided by using the recursive total least squares (RTLS) algorithm. The RTLS algorithm described in this paper gives better performance than RLS algorithm over a wide range of SNRs and involves approximately the same computational complexity of O(N²).

FIR System Identification Method Using Collaboration Between RLS (Recursive Least Squares) and RTLS (Recursive Total Least Squares) (RLS (Recursive Least Squares)와 RTLS (Recursive Total Least Squares)의 결합을 이용한 새로운 FIR 시스템 인식 방법)

  • Lim, Jun-Seok;Pyeon, Yong-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.374-380
    • /
    • 2010
  • It is known that the problem of FIR filtering with noisy input and output data can be solved by a total least squares (TLS) estimation. It is also known that the performance of the TLS estimation is very sensitive to the ratio between the variances of the input and output noises. In this paper, we propose a convex combination algorithm between the ordinary recursive LS based TLS (RTLS) and the ordinary recursive LS (RLS). This combined algorithm is robust to the noise variance ratio and has almost the same complexity as the RTLS. Simulation results show that the proposed algorithm performs near TLS in noise variance ratio ${\gamma}{\approx}1$ and that it outperforms TLS and LS in the rage of 2 < $\gamma$ < 20. Consequently, the practical workability of the TLS method applied to noisy data has been significantly broadened.

An Efficient Recursive Total Least Squares Algorithm for Training Multilayer Feedforward Neural Networks

  • Choi Nakjin;Lim Jun-Seok;Sung Koeng-Mo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.527-530
    • /
    • 2004
  • We present a recursive total least squares (RTLS) algorithm for multilayer feedforward neural networks. So far, recursive least squares (RLS) has been successfully applied to training multilayer feedforward neural networks. But, when input data contain additive noise, the results from RLS could be biased. Such biased results can be avoided by using the recursive total least squares (RTLS) algorithm. The RTLS algorithm described in this paper gives better performance than RLS algorithm over a wide range of SNRs and involves approximately the same computational complexity of $O(N^{2})$.

  • PDF

A study on robust recursive total least squares algorithm based on iterative Wiener filter method (반복형 위너 필터 방법에 기반한 재귀적 완전 최소 자승 알고리즘의 견실화 연구)

  • Lim, Jun Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.213-218
    • /
    • 2021
  • It is known that total least-squares method shows better estimation performance than least-squares method when noise is present at the input and output at the same time. When total least squares method is applied to data with time series characteristics, Recursive Total Least Squares (RTS) algorithm has been proposed to improve the real-time performance. However, RTLS has numerical instability in calculating the inverse matrix. In this paper, we propose an algorithm for reducing numerical instability as well as having similar convergence to RTLS. For this algorithm, we propose a new RTLS using Iterative Wiener Filter (IWF). Through the simulation, it is shown that the convergence of the proposed algorithm is similar to that of the RTLS, and the numerical robustness is superior to the RTLS.

A Coupled Recursive Total Least Squares-Based Online Parameter Estimation for PMSM

  • Wang, Yangding;Xu, Shen;Huang, Hai;Guo, Yiping;Jin, Hai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2344-2353
    • /
    • 2018
  • A coupled recursive total least squares (CRTLS) algorithm is proposed for parameter estimation of permanent magnet synchronous machines (PMSMs). TLS considers the errors of both input variables and output ones, and thus achieves more accurate estimates than standard least squares method does. The proposed algorithm consists of two recursive total least squares (RTLS) algorithms for the d-axis subsystem and q-axis subsystem respectively. The incremental singular value decomposition (SVD) for the RTLS obtained by an approximate calculation with less computation. The performance of the CRTLS is demonstrated by simulation and experimental results.

A New Recursive Least-Squares Algorithm based on Matrix Pseudo Inverses (ICCAS 2003)

  • Quan, Zhonghua;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.927-931
    • /
    • 2003
  • In this paper, a new Recursive Least-Squares(RLS) algorithm based on matrix pseudo-inverses is presented. The aim is to use the proposed new RLS algorithm for not only the over-determined but also the under-determined estimation problem. Compared with previous results, e.g., Jie Zhou et al., the derivation of the proposed recursive form is much easier, and the recursion form is also much simpler. Furthermore, it is shown by simulations that the proposed RLS algorithm is more efficient and numerically stable than the existing algorithms.

  • PDF

An time-varying acoustic channel estimation using least squares algorithm with an average gradient vector based a self-adjusted step size and variable forgetting factor (기울기 평균 벡터를 사용한 가변 스텝 최소 자승 알고리즘과 시변 망각 인자를 사용한 시변 음향 채널 추정)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.283-289
    • /
    • 2019
  • RLS (Recursive-least-squares) algorithm is known to have good convergence and excellent error level after convergence. However, there is a disadvantage that numerical instability is included in the algorithm due to inverse matrix calculation. In this paper, we propose an algorithm with no matrix inversion to avoid the instability aforementioned. The proposed algorithm still keeps the same convergence performance. In the proposed algorithm, we adopt an averaged gradient-based step size as a self-adjusted step size. In addition, a variable forgetting factor is introduced to provide superior performance for time-varying channel estimation. Through simulations, we compare performance with conventional RLS and show its equivalency. It also shows the merit of the variable forgetting factor in time-varying channels.

Interference Cancellation Based on Adaptive Signal Processing for MIMO RF Repeaters (MIMO RF 중계기를 위한 적응 신호처리 기반의 간섭 제거)

  • Lee, Kyu-Bum;Choi, Ji-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.735-742
    • /
    • 2010
  • In this paper, we propose adaptive algorithms for interference cancellation in RF repeaters with multiple transmit and receive antennas. When multiple antennas are used in a repeater, the imperfect isolation between transmit and receive antennas causes the feedback interference which is modeled as multi-input multi-output (MIMO) channel. To remove the feedback interference, we derive the least mean square (LMS) algorithm and the recursive least squares (RLS) algorithm for interference cancellation based on adaptive signal processing techniques. Through computer simulations for the proposed algorithms, we analyze the convergence characteristics and compare the steady-state performance for interference cancellation.

Least-squares Lattice Laguerre Smoother

  • Kim, Dong-Kyoo;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1189-1191
    • /
    • 2005
  • This paper introduces the least-squares order-recursive lattice (LSORL) Laguerre smoother that has order-recursive smoothing structure based on the Laguerre signal representation. The LSORL Laguerre smoother gives excellent performance for a channel equalization problem with smaller order of tap-weights than its counterpart algorithm based on the transversal filter structure. Simulation results show that the LSORL Laguerre smoother gives better performance than the LSORL transversal smoother.

  • PDF

Mixture Filtering Approaches to Blind Equalization Based on Estimation of Time-Varying and Multi-Path Channels

  • Lim, Jaechan
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.8-18
    • /
    • 2016
  • In this paper, we propose a number of blind equalization approaches for time-varying andmulti-path channels. The approaches employ cost reference particle filter (CRPF) as the symbol estimator, and additionally employ either least mean squares algorithm, recursive least squares algorithm, or $H{\infty}$ filter (HF) as a channel estimator such that they are jointly employed for the strategy of "Rao-Blackwellization," or equally called "mixture filtering." The novel feature of the proposed approaches is that the blind equalization is performed based on direct channel estimation with unknown noise statistics of the received signals and channel state system while the channel is not directly estimated in the conventional method, and the noise information if known in similar Kalman mixture filtering approach. Simulation results show that the proposed approaches estimate the transmitted symbols and time-varying channel very effectively, and outperform the previously proposed approach which requires the noise information in its application.