• 제목/요약/키워드: Recursive circulants

검색결과 14건 처리시간 0.021초

다중포트 통신에서의 재귀원형군에 대한 최적 방송 (Optimal Broadcasting in Recursive circulants under Multi-port Communication)

  • 최정;이형옥;임형석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.471-474
    • /
    • 1998
  • In this paper, we consider the problem of optimal broadcasting in recursive circulants under multi-port communication model. Recursive circulant G(N, d) that is defined to be a circulant graph with N vertices and jumps of powers of d is a useful interconnection network from the viewpoint of network metrices. Our model assumes that a processor can transmit a message to $\alpha$ neighboring processors simultaneously where $\alpha$ is two or three. For the broadcasting problem, we introduce 3-trees and 4-trees. And then we show that 3-trees and 4-trees are minimum broadcast trees in 2-port model and 3-port model. Using the above results, we show that recursive circulants g(2m, 2) have optimum broadcasting time in 2-port model and 3-port model.

  • PDF

재귀원형군과 하이퍼큐브의 고장 감내에 대한 결정적 척도 (Deterministic Measures of Fault-Tolerance in Recursive Circulants and Hypercubes)

  • 박정흠;김희철
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제29권9호
    • /
    • pp.493-502
    • /
    • 2002
  • 다중 컴퓨터 네트워크의 고장 감내에 대한 대표적인 결정적 척도로 연결도와 에지 연결도가 있다. 연결도나 에지 연결도는 어떤 정점 분리 집합이나 에지 분리 집합을 제거했을 때 남은 그래프의 형태를 고려하지 않는다는 문제가 있다. 이러한 단점을 보완하기 위해서 superconnectivity, toughness, scattering number, vertex-integrity, binding number, restricted connectivity와 같은 일반화된 연결성 척도들이 함께 사용된다. 이 논문에서는 재귀원형군과 하이퍼큐브의 고장 감내에 대한 이러한 결정적 척도를 분석하고, 고장 감내 측면에서 비교한다.

재귀원형군의 일대일 서로소인 경로 커버 (One-to-One Disjoint Path Covers in Recursive Circulants)

  • 박정흠
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권12호
    • /
    • pp.691-698
    • /
    • 2003
  • 이 논문에서는 주어진 두 정점 사이에 다른 모든 정점을 정확히 한번 지나는 k개의 서로소인 경로가 존재하는가 하는 일대일 서로소인 경로 커버 문제를 제안한다. 임의의 k, 임의의 두 정점 사이에 일대일 서로소인 경로 커버를 가지는 그래프는 해밀톤 연결되어 있다는 것보다 강한 해밀톤 성질을 가진다. 재귀원형군에서 이 문제를 고찰하여, 임의의$k(1{\leq}k{\leq}m)$에 대해서 $ G(2^m,4)$, $m{\geq}3$은 임의의 두 정점 사이에 k개의 경로로 이루어진 일대일 서로소인 경로 커버가 존재함을 보인다.

재귀원형군과 토러스에서 쌍형 다대다 서로소인 경로 커버 (Paired Many-to-Many Disjoint Path Covers in Recursive Circulants and Tori)

  • 김유상;박정흠
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제36권1호
    • /
    • pp.40-51
    • /
    • 2009
  • 그래프 G의 쌍형 다대다 k-서로소인 경로 커버(쌍형 k-DPC)는 k개의 서로 다른 소스-싱크 쌍을 연결하며 그래프에 있는 모든 정점을 지나는 k개의 서로소인 경로 집합이다. 이 논문에서는 재귀원형군 G($cd^m$,d), $d{\geq}3$과 토러스에서 서로소인 경로 커버를 고려하여, 이분 그래프가 아니고 분지수가 $\delta$인 재귀원형군과 토러스는 고장 요소(정점이나 에지)가 f개 이하일 때 $f+2k{\leq}{\delta}-1$을 만족하는 임의의 f, $k{\geq}1$에 대하여 쌍형 k-DPC를 가짐을 보인다.

고장난 재귀원형군의 사이클 임베딩 (Cycle Embedding of Faulty Recursive Circulants)

  • 박정흠
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권1_2호
    • /
    • pp.86-94
    • /
    • 2004
  • 이 논문에서는 재귀원형군 $ G(2^m, 4), m{\geq}3$은 고장인 요소의 수가 m-2개 이하일 때, 임의의 1, 4 ${\leq}1{\leq}2^m-f_v$에 대하여 길이 1인 고장 없는 사이클을 가짐을 보인다. 여기서, f$_{v}$ 는 고장 정점의 수이다. 이를 위하여, |F|$\leq$k인 임의의 고장 요소 집합 F에 대해서 G-F가 임의의 두 정점을 잇는 길이가 해밀톤 경로보다 하나 작은 경로를 가질 때, G를 k-고장 하이포해밀톤 연결된 그래프라고 정의하고, $ G(2^m, 4), m{\geq}3$은 m-3-고장 하이포해밀톤 연결된 그래프임을 보인다.

재귀원형군의 위상 특성 : 서로소인 사이클과 그래프 invariant (Topological Properties of Recursive Circulants : Disjoint Cycles and Graph Invariants)

  • 박정흠;좌경룡
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제26권8호
    • /
    • pp.999-1007
    • /
    • 1999
  • 이 논문은 재귀원형군 G(2^m , 2^k )를 그래프 이론적 관점에서 고찰하고 정점이 서로소인 사이클과 그래프 invariant에 관한 위상 특성을 제시한다. 재귀원형군은 1 에서 제안된 다중 컴퓨터의 연결망 구조이다. 재귀원형군 {{{{G(2^m , 2^k )가 길이 사이클을 가질 필요 충분 조건을 구하고, 이 조건하에서 G(2^m , 2^k )는 가능한 최대 개수의 정점이 서로소이고 길이가l`인 사이클을 가짐을 보인다. 그리고 정점 및 에지 채색, 최대 클릭, 독립 집합 및 정점 커버에 대한 그래프 invariant를 분석한다.Abstract In this paper, we investigate recursive circulant G(2^m , 2^k ) from the graph theory point of view and present topological properties of G(2^m , 2^k ) concerned with vertex-disjoint cycles and graph invariants. Recursive circulant is an interconnection structure for multicomputer networks proposed in 1 . A necessary and sufficient condition for recursive circulant {{{{G(2^m , 2^k ) to have a cycle of lengthl` is derived. Under the condition, we show that G(2^m , 2^k ) has the maximum possible number of vertex-disjoint cycles of length l`. We analyze graph invariants on vertex and edge coloring, maximum clique, independent set and vertex cover.

완전삼진트리의 재귀원형군에 대한 임베딩 (Embedding Complete Ternary Trees in Recursive Circulants)

  • 이형옥;임형석
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제26권3호
    • /
    • pp.380-388
    • /
    • 1999
  • 본 논문에서는 완전삼트리를 재귀원형군에 임베딩하는 문제를 고려한다. 재귀원형군 G(N,d)는 N개의 노드와 N보다 작은 d의 거듭제곱에 의한 점프에지를 가지는 원형군그래프이다. 임베딩 문제를 해결하고자 본 논문에서는 노드수가 3k인 삼항트리 Tk새롭게 도입한다. 먼저 N개 이하의 정점을 가지는 삼항트리가 G(N, 2)와 G(N,3)의 부그래프임을 보인다. 또한 완전 삼진트리가 삼항트리에 연장률 2, 확장률2, 밀집률 2로 임베딩됨을 보인다. 이러한 결과들을 결합하면서 N개 이하의 정점을 가지는 완전삼진 트리가 재귀원형군G(2N, 2)과 G(2N, 3)에 연장률 2, 밀집률 2로 임베딩 가능하게 한다. 임베딩 과정에서 이용된 삼항트리는 2 -포트 방송모델에서 최소방송트리임을 보이고, 이를 이용하여 재귀원형군 G(2m, 2)가 2-포트 방송모델에서 최소방송시간을 가짐을 보인다.

재귀원형군의 강한 해밀톤 성질 (Strong Hamiltonicity of Recursive Circulants)

  • 박정흠
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제28권8호
    • /
    • pp.399-405
    • /
    • 2001
  • 이 논문은 재귀원형군 G(2$^{m}$ , 2$^{k}$ )의 강한 해밀톤 성질을 그래프 이론적 관점에서 고찰한다. 재귀원형군은 [9]에서 제안된 다중 컴퓨터의 연결망 구조이다. G(2$^{m}$ , 2$^{k}$ )가 임의의 정점 쌍 ν, $\omega$를 잇는 길이 ι인 경로를 가지는가 하는 문제를 고려하여, (a) G(2$^{m}$ , 2$^{k}$ )는 ι$\geq$d(ν, $\omega$)을 만족하는 모든 ι에 대해서 길이 ι인 경로를 가지며, (b) G(2$^{m}$ , 4)는 ι$\geq$d(ν, $\omega$)+2인 모든 길이의 경로를 가지며, (c)G(2$^{m}$ , 2$^{k}$ ), k$\geq$3은 길이 d(ν, $\omega$)+2$^{k}$ -3인 경로를 가지지 않는 정점 쌍이 있음을 보인다. 여기서, d(ν, $\omega$)는 ν와 $\omega$ 사이의 거리이다.

  • PDF

재귀원형군 $G({2^m} ,{26k})$ 고장지름$^1$ (Fault Diameter of Recursive Circulants $G({2^m} ,{26k})$)

  • 정호영;김희철;박정흠
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (1)
    • /
    • pp.589-591
    • /
    • 2001
  • 본 논문에서는 재귀원형군 G(2$^{m}$ , 2$^{k}$ )에서 노드에 고장이 났을 경우 임의의 두 노드사이의 고장이 없는 최단경로의 길이를 분석한다. m > k+1인 G(2$^{m}$ , 2$^{k}$ )에서 m = nk+r이라 하자. 여기서 n $\geq$ 이고, 1$\leq$ r$\leq$ k이다. m > k+1인 G(2$^{m}$ , 2$^{k}$ )에서 임의의 연결도-1개 이하의 노드에 고장이 있을 경우, 모든 두 노드 사이의 고장이 없는 가장 짧은 경로들의 길이의 최대값, 즉 G(2$^{m}$ , 2$^{k}$ )의 고장지름은 n이 짝수이면 di $a_{m, k}$+2 이하이고, n이 흘수이면 di $a_{m, k}$+3 이하이다. 여기서 di $a_{m, k}$는 G(2$^{m}$ , 2$^{k}$ )의 지름이다.

  • PDF