• Title/Summary/Keyword: Recursive Least Square

Search Result 261, Processing Time 0.035 seconds

On-line sensor calibration for mobile robot (이동 로봇을 위한 온라인 센서 교정 방법)

  • 김성도;유원필;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.527-530
    • /
    • 1996
  • The Kalman filter has been used as a self-localization method for the mobile robot. To satisfy the assumptions inherent in the Kalman filter, we should calibrate the sensors of the robot before use of them. However, it is generally hard to find exact sensor parameters, and the parameters may change during the robot task as the environment varies. Thus we need to perform on-line sensor calibration, by which we can obtain more credible location of the mobile robot. In this paper, we present an on-line sensor calibration scheme which estimates the unknown sensor bias and the current position of the robot. To this end, first we find out the calibration errors of the sensor from redundant sensory data using the parity vector and recursive minimum variance estimation. Then we calculate the current position of the robot by weighted least square estimation without internal encoder data. The performance of the proposed method is evaluated through computer simulation.

  • PDF

Self-Tuning Position Control of a Remotely Operated Vehicle (원격무인 잠수정의 자기동조 위치제어)

  • Lee, Pan-Muk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.551-551
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

Self-Tuning Position Control of a Remotely Operated Vehicle (원격무인 잠수정의 자기동조 위치제어)

  • Lee, Pan-Muk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

  • PDF

Nonlinear System Modeling Using Bacterial Foraging and FCM-based Fuzzy System (Bacterial Foraging Algorithm과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • Jo Jae-Hun;Jeon Myeong-Geun;Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.121-124
    • /
    • 2006
  • 본 논문에서는 Bacterial Foraging Algorithm과 FCM(fuzzy c-means)클러스터링을 이용하여 TSK(Takagi-Sugeno-Kang)형태의 퍼지 규칙 생성과 퍼지 시스템(FCM-ANFIS)을 효과적으로 구축하는 방법을 제안한다. 구조동정에서는 먼저 PCA(Principal Component Analysis)을 이용하여 입력 데이터 성분간의 상관관계를 제거한 후에 FCM을 이용하여 클러스터를 생성하고 성능지표에 근거해서 타당한 클러스터의 수, 즉 퍼지 규칙의 수를 얻는다. 파라미터 동정에서는 Bacterial Foraging Algorithm을 이용하여 전제부 파라미터를 최적화 시킨다. 결론부 파라미터는 RLSE(Recursive Least Square Estimate)에 의해 추정되어진다. PCA(Principal Component Analysis)와 FCM을 적용함으로써 타당한 규칙 수를 생성하였고 Bacterial Foraging Algorithm을 이용하여 최적의 전제부 파라미터를 구하였다. 제안된 방법의 성능을 평가하기 위하여 Box-Jenkins의 가스로 데이터와 Rice taste 데이터의 모델링에 적용하였고 우수한 성능을 보임을 알 수 있었다.

  • PDF

Passive Telemetry Capacitive Humidity Sensor System using RLSE Algorithm

  • Lee, Joon-Tark;Park, Young-sik;Kim, Kyung-Yup
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.495-498
    • /
    • 2004
  • In this paper, passive telemetry capacitive humidity sensor system using a RLSE(Recursive Least Square Estimation) technique Is proposed. To overcome the problem like power limits and complications that general passive telemetry sensor system including IC chip has, the principle of inductive coupling is applied to model the sensor system. Specially, by applying the forgetting factor, we show that the accuracy of its estimation can be improved even in the case of time varying parameter and also the convergence time can be reduced.

  • PDF

Passive Telemetry Sensor System using RLSE Based Real Time Estimation Technique with Optimal Forgetting Factor

  • Lee, Joon-Tark;Kim, Kyung-Yup
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.515-520
    • /
    • 2004
  • In this paper, a passive telemetry RF capacitive humidity sensor system using a RLSE(Recursive Least Square Estimation) technique is proposed. To overcome these trouble problems such as a power limitation and a estimation complexity that the general passive telemetry sensor system including It chip has, the principle of inductive coupling was applied to the modeling of a passive telemetry RF capacitive humidity sensor system and its capacitance was estimatedd by the RLSE algorithm. Specially, by introducing the optimal forgetting factor, we showed that the accuracy of its estimation was improved even in the time varying system and also the convergence time was reduced.

  • PDF

Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network (유도전동기의 속도 센서리스 제어를 위한 신경회로망 알고리즘의 추정 특성 비교)

  • 이경훈;국윤상;김윤호;최원범
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.526-530
    • /
    • 1999
  • This paper presents a newly developed speed sensorless drive using Neural Network algorithm. Neural Network algorithm can be divided into three categories. In the first one, a Back Propagation-based NN algorithm is well-known to gradient descent method. In the second scheme, a Extended Kalman Filter-based NN algorithm has just the time varying learning rate. In the last scheme, a Recursive Least Square-based NN algorithm is faster and more stable than the classical back-propagation algorithm for training multilayer perceptrons. The number of iterations required to converge and the mean-squared error between the desired and actual outputs is compared with respect to each method. The theoretical analysis and experimental results are discussed.

  • PDF

A Study on the Direct Pole Placement PID Self-Tuning Controller design for DC Servo Motor Control (직류 서어보 전동기 제어를 위한 직접 극배치 PID 자기동조 제어기의 설계)

  • Rhee, Kyu-Young;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.327-331
    • /
    • 1989
  • This paper concerned about a study on the direct pole placement PID self-tuning controller design for Robot manipulator control system. The method of a direct pole placement self-tuning PID control for a DC motor of robot manipulator tracks a reference velocity in spite of the parameters uncertainties in nonminimum phase system. In this scheme, the parameters of controller are estimated by the recursive least square(RLS) identification algorithm, the pole placement method and diophantine equation. A series of simulation in which minimum phase system and nonminimum phase system are subjected to a pattern of system parameter changes is presented to show some of the features of the proposed control algorithm. The proposed control algorithm which shown are effective for the practical application, and experiments of DC motor speed control for Robot manipulator by a microcomputer IRH-PC/AT are performed and the results are well suited.

  • PDF

A Study the On-Line Systems Identification of Unknown Systems using Laguerre Models (Laguerre 모델을 이용한 미지 시스템의 온-라인 시스템 동정에 관한 연구)

  • O, Hyeon-Cheol;Kim, Yun-Sang;Lee, Jae-Chun;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.728-734
    • /
    • 1999
  • An on-line system identification scheme of unknown system is proposed based on a Laguerre models representation. The unknown parameters are detemined using recursive least-square identification. The proposed method have the advantage that an unknown system can be modelled without structural knowledge and assumption about the true model order and time delay. Therefore, the proposed method can make the design procedure very when compared to widely-used conventional method.

  • PDF

A Design of GA-based Fuzzy Controller and Truck Backer-Upper Control (GA 기반 퍼지 제어기의 설계 및 트럭 후진제어)

  • Kwak, Keun-Chang;Kim, Ju-Sik;Jeong, Su-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.